纺织学报 ›› 2019, Vol. 40 ›› Issue (12): 152-161.doi: 10.13475/j.fzxb.20190905410

所属专题: 高性能纤维制备及应用

• 纺织科技新见解学术沙龙专栏:碳纤维及其复合材料制备技术及应用 • 上一篇    下一篇

高性能聚丙烯腈基碳纤维制备技术几点思考

张泽1,2, 徐卫军1, 康宏亮2, 徐坚2, 刘瑞刚2,3()   

  1. 1.兰州交通大学 机电工程学院, 甘肃 兰州 730070
    2.中国科学院化学研究所 北京分子 科学国家研究中心, 北京 100190
    3.中国科学院大学, 北京 100049
  • 收稿日期:2019-09-23 修回日期:2019-10-08 出版日期:2019-12-15 发布日期:2019-12-18
  • 通讯作者: 刘瑞刚
  • 作者简介:张泽(1994—),男,硕士生。主要研究方向为高性能纤维结构与性能。
  • 基金资助:
    国家高技术研究发展计划(863)项目(2015AA03A204)

Thoughts on preparation technology of high performance polyacrylonitrile-based carbon fibers

ZHANG Ze1,2, XU Weijun1, KANG Hongliang2, XU Jian2, LIU Ruigang2,3()   

  1. 1. School of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
    2. Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-09-23 Revised:2019-10-08 Online:2019-12-15 Published:2019-12-18
  • Contact: LIU Ruigang

摘要:

针对中国高性能聚丙烯腈(PAN)基碳纤维产业技术发展现状和存在的问题,就其生产过程中的一些基础问题进行总结,提出了研究和产业发展建议。在PAN原丝纺丝溶液制备过程中,可通过聚合工艺和设备的协同,实现PAN连续溶液聚合,得到均匀的PAN纺丝溶液。在原丝制备过程中,可通过凝固参数控制,调控PAN纺丝溶液细流的相分离过程,减小相分离过程形成的微孔尺寸;在干燥致密化和干热牵伸过程中,调控温湿度和张力,可控制微孔融合和PAN分子结晶与取向,制备出高品质碳纤维原丝。在预氧化和炭化过程中,通过对温度场和应力场的调控,控制预氧化过程的皮芯结构和炭化过程中的乱层石墨结构,可实现对碳纤维性能调控。

关键词: 聚丙烯腈基碳纤维, 连续聚合, 相分离, 结构与性能, 微缺陷

Abstract:

Polyacrylonitrile (PAN)-based carbon fibers were developed rapidly in the past twenty years in China. Based on the current state of the development of PAN-based carbon fibers, basic problems in the production process of PAN-based carbon fibers were considered and summarized. In the preparation of PAN spinning solution, continuous polymerization of PAN was realized by the cooperation of polymerization process and equipment, by which homogeneous PAN spinning solution with stable properties can be prepared. In the preparation of PAN precursor fibers, the phase separation process of PAN spinning solution was controlled by coagulation parameters to reduce the size of micro-pores formed during phase separation. The drying and hot-drawing procedures, the temperature, humidity and tension were carefully controlled to optimize the micro-pores fusion, crystallization and orientation of PAN molecule to prepare high-quality PAN precursor. In the stabilization and carbonization procedures, the skin-core and turbostratic graphite structure were controlled by adjusting temperature and stress fields to control the structure and properties of the resultant PAN-based carbon fibers.

Key words: polyacrylonitrile-based carbon fiber, continuous polymerization, phase separation, structure and property, micro-void

中图分类号: 

  • TQ536.2

图1

商用沥青和PAN基碳纤维的强度和模量"

图2

PAN基碳纤维生产流程"

图3

PAN均聚物和共聚物在空气气氛中的DSC曲线"

图4

PAN的熔点与其含水量的关系"

图5

PAN的氧化反应"

图6

PAN纤维在270 ℃下热处理皮层厚度和含氧量与时间关系"

表1

PAN炭化过程中气体释放"

温度/℃ 现象 原因
220 释放HCN并与O2发生化学反应 梯形聚合物的生成和氧化
260 基本没有变化,纤维模量不变 无链断裂
300 释放大量的CO2和H2O,同时释放CO、HCN和一些腈类化合物;纤维模量不变 CO2来源于氧化聚合物的羰基,无交联反应发生
400 释放CO2、H2O、CO、HCN和NH3,少量C3烃类和腈类化合物释放;纤维模量增大 分子内脱水交联
500 H2释放增加,同时释放少量NH3和HCN;纤维模量增大 脱氢交联
600 H2释放量减少,释放HCN和痕量的N2 脱氢交联
700 释放N2、HCN和H2;纤维模量增大 脱氢和释放N2交联
800 大量N2和H2释放,同时释放HCN;纤维模量增大 释放N2交联
900 N2释放量达到峰值,同时释放一些H2和痕量的HCN;纤维模量增大 脱N2交联
1 000 N2释放量下降到800 ℃时的水平,同时释放痕量H2;纤维模量增大 脱N2交联

图7

PAN基碳纤维的拉伸强度和拉伸模量随炭化温度的变化关系"

[1] FITZER E. Carbon Fibres: Present State and Future Expectations[M]. Berlin: Springer, 1990: 3-41.
[2] TANG M M, BACON R. Carbonization of cellulose fibers: 1. Low temperature pyrolysis[J]. Carbon, 1964,2:211-220.
[3] LIU H C, TUAN C C, DAVIJANI A A B, et al. Rheological behavior of polyacrylonitrile and polyacrylonitrile/lignin blends[J]. Polymer, 2017,111:177-182.
[4] TAN L J, PAN J P, WAN A J. Shear and extensional rheology of polyacrylonitrile solution: effect of ultrahigh molecular weight polyacrylonitrile[J]. Colloid and Polymer Science, 2012,290:289-295.
[5] LI Q, XIE S X, SEREM W K, et al. Quality carbon fibers from fractionated lignin[J]. Green Chemistry, 2017,19:1628-1634.
[6] LI Q, RAGAUSKAS A J, YUAN J S. Lignin carbon fiber: the path for quality[J]. TAPPI Journal, 2017,16:107-108.
doi: 10.32964/TJournal
[7] STEUDLE L M, FRANK E, OTA A, et al. Carbon fibers prepared from melt spun peracylated softwood lignin: an integrated approach[J]. Macromolecular Materials and Engineering, 2017,302:1700195.
doi: 10.1002/mame.v302.10
[8] TRICK K A, SALIBA T E. Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite[J]. Carbon, 1995,33:1509-1515.
doi: 10.1016/0008-6223(95)00092-R
[9] BEHR M J, LANDES B G, BARTON B E, et al. Structure-property model for polyethylene-derived carbon fiber[J]. Carbon, 2016,107:525-535.
[10] YOUNKER J M, SAITO T, HUNT M A, et al. Pyrolysis pathways of sulfonated polyethylene, an alternative carbon fiber precursor[J]. Journal of the American Chemical Society, 2013,135:6130-6141.
pmid: 23560686
[11] 王茂章, 贺福. 碳纤维的制造、性质及其应用[M]. 北京: 科学出版社, 1984: 1-20.
WANG Maozhang, HE Fu. Manufacture,Properties and Applications of Carbon Fiber[M]. Beijing: Science Press, 1984: 1-20.
[12] NEWCOMB B A. Processing, structure, and properties of carbon fibers[J]. Composites Part A: Applied Science and Manufacturing, 2016,91:262-282.
[13] ZIABICKI A, SONS J W. Fundamentals of Fibre Formation[M]. Amsterdam: Elsevier, 1976: 15-35.
[14] DALTON S, HEATLEY F, BUDD P M. Thermal stabilization of polyacrylonitrile fibres[J]. Polymer, 1999,40:5531-5543.
[15] OUYANG Q, CHENG L, WANG H J, et al. Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile[J]. Polymer Degradation and Stability, 2008,93:1415-1421.
[16] WATT W, JOHNSON W. Mechanism of oxidization of polyacrylonitrile fibers[J]. Nature, 1975,257:210-212.
[17] NUNNA S, NAEBE M, HAMEED N, et al. Evolution of radial heterogeneity in polyacrylonitrile fibres during thermal stabilization: an overview[J]. Polymer Degradation and Stability, 2017,136:20-30.
[18] 张寿春, 温月芳, 杨永岗, 等. 衣康酸铵改性对聚丙烯腈热性能的影响[J]. 高分子材料科学与工程, 2004,20(3):103-106.
ZHANG Shouchun, WEN Yuefang, YANG Yonggang, et al. Effect of modification of itacnic acid ammonium on the thermal properties of polyacrylonitrile[J]. Polymer Materials Science & Engineering, 2004,20(3):103-106.
[19] GUPTA V B, KOTHARI V K. In Manufactured Fibre Technology[M]. Dordrecht:Springer, 1997: 248-270.
[20] NEWCOMB B A, GULGUNJE P V, LIU Y, et al. Polyacrylonitrile solution homogeneity study by dynamic shear rheology and the effect on the carbon fiber tensile strength[J]. Polymer Engineering & Science, 2016,56:361-370.
[21] CHAE H G, NEWCOMB B A, GULGUNJE P V, et al. High strength and high modulus carbon fibers[J]. Carbon, 2015,93:81-87.
[22] 余晓兰. 聚丙烯腈基材料的制备、表征及应用[D]. 北京:中国科学院大学, 2011: 32-46.
YU Xiaolan. The preparation, characterization and applications of polyacrylnitril based materials[D]. Beijing: University of Chinese Academy of Sciences, 2011: 32-46.
[23] 刘小芳. 聚丙烯腈溶胶-凝胶转变及其纤维结构演变的研究[D]. 北京: 中国科学院大学, 2014: 68-84.
LIU Xiaofang. Researches on the sol-gel transition of polyacrylnitril solution and the structure formation and development of polyacrylnitril fibers[D]. Beijing: University of Chinese Academy of Sciences, 2014: 68-84.
[24] FRUSHOUR B G. Melting and structure of polyacrylonitrile[J]. Bulletin of the American Physical Society, 1980,25:352-353.
[25] MARINESCO S, CAREW T J. Improved electrochemical detection of biogenic amines in Aplysia using base-hydrolyzed cellulose-coated carbon fiber microelec-trodes[J]. Journal of Neuroscience Methods, 2002,117:87-97.
pmid: 12084568
[26] KO T H. Influence of continuous stabilization on the physical-properties and microstructure of PAN-based carbon-fibers[J]. Journal of Applied Polymer Science, 1991,42:1949-1957.
[27] HUANG X S. Fabrication and properties of carbon fibers[J]. Materials, 2009,2:2369-2403.
[28] SEDGHI A, FARSANI R E, SHOKUHFAR A. The effect of commercial polyacrylonitrile fibers characterizations on the produced carbon fibers properties[J]. Journal of Materials Processing Technology, 2008,198:60-67.
[29] DUNHAM M G, EDIE D D. Model of stabilization for PAN-based carbon-fiber precursor bundles[J]. Carbon, 1992,30:435-450.
[30] GUPTA A, HARRISON I R. New aspects in the oxidative stabilization of PAN-based carbon fibers[J]. Carbon, 1996,34:1427-1445.
doi: 10.1016/S0008-6223(96)00094-2
[31] BAJAJ P, SREEKUMAR T V, SEN K. Thermal behaviour of acrylonitrile copolymers having methacrylic and itaconic acid comonomers[J]. Polymer, 2001,42:1707-1718.
doi: 10.1016/S0032-3861(00)00583-8
[32] TSAI J S, LIN C H. Effect of comonomer composition on the properties of polyacrylonitrile precursor and resulting carbon-fiber[J]. Journal of Applied Polymer Science, 1991,43:679-685.
[33] ARBAB S, ZEINOLEBADI A. A procedure for precise determination of thermal stabilization reactions in carbon fiber precursors[J]. Polymer Degradation and Stability, 2013,98:2537-2545.
[34] KAKIDA H, TASHIRO K, KOBAYASHI M. Mechanism and kinetics of stabilization reaction of polyacrylonitrile and related copolymers: 1: relationship between isothermal DSC thermogram and FT/IR spectral change of an acrylonitrile methacrylic acid copolymer[J]. Polymer Journal, 1996,28:30-34.
[35] FU Z Y, LIU B J, ZHANG H X. Study on thermal oxidative stabilization reactions of poly(acrylonitrile-co-itaconic acid) copolymers synthesized at different polymerization stages[J]. Journal of Applied Polymer Science, 2017,134(35):45245.
[36] XUE Y, LIU J, LIANG J Y. Correlative study of critical reactions in polyacrylonitrile based carbon fiber precursors during thermal-oxidative stabilization[J]. Polymer Degradation and Stability, 2013,98:219-229.
[37] KAKIDA H, TASHIRO K. Mechanism and kinetics of stabilization reactions of polyacrylonitrile and related copolymers: 3: comparison among the various types of copolymers as viewed from isothermal DSC thermograms and FT-IR spectral changes[J]. Polymer Journal, 1997,29:557-562.
[38] KAKIDA H, TASHIRO K. Mechanism and kinetics of stabilization reaction of polyacrylonitrile and related copolymers: 2: relationships between isothermal DSC thermograms and FT-IR spectral changes of polyacrylonitrile in comparison with the case of acrylonitrile methacrylic acid copolymer[J]. Polymer Journal, 1997,29:353-357.
[39] GUPTA A, HARRISON I R. New aspects in the oxidative stabilization of PAN-based carbon fibers[J]. Carbon, 1997,35:809-818.
[40] GUPTA A K, PALIWAL D K, BAJAJ P. Acrylic precursors for carbon-fibers[J]. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics, 1991,31(1):1-89.
[41] SIVY G T, COLEMAN M M. Fourier-transform IR studies of the degradation of polyacrylonitrile co-polymers: 4: acrylonitrile-acrylamide co-polymers[J]. Carbon, 1981,19:137-139.
[42] COLEMAN M M, SIVY G T. Fourier-transform IR studies of the degradation of polyacrylonitrile co-polymers: 3: acrylonitrile-vinyl acetate co-polymers[J]. Carbon, 1981,19:133-135.
[43] HAO J, LIU Y D, LU C X. Effect of acrylonitrile sequence distribution on the thermal stabilization reactions and carbon yields of poly(acrylonitrile-co-methyl acrylate)[J]. Polymer Degradation and Stability, 2018,147:89-96.
[44] HOUTZ R C. "Orlon" acrylic fiber: chemistry and properties[J]. Textile Research Journal, 1950,20:786-801.
[45] SCHURZ J. Discoloration effects in acrylonitrile polymers[J]. Journal of Polymer Science, 1958,28:438-439.
[46] STANDAGE A E, MATKOWSKY R D. Thermal oxidation of polyacrylonitrile[J]. European Polymer Journal, 1971,7:775-783.
doi: 10.1016/0014-3057(71)90043-7
[47] FRIEDLANDER H N, PEEBLES L H, BRANDRUP J, et al. On the chromophore of polyacrylonitrile: VI: mechanism of color formation in polyacrylonitrile[J]. Macromolecules, 1968,1:79-86.
[48] HENRICI-OLIVE G, OLIVE S. Molecular Interactions and Macroscopic Properties of Polyacrylonitrile and Model Substances[M]. Berlin: Springer, 1979: 123-152.
[49] GANSTER J, FINK H P, ZENKE I. Chain conformation of polyacrylonitrile: a comparison of model scattering and radial-distribution functions with experimental wide-angle X-ray-scattering results[J]. Polymer, 1991,32:1566-1573.
[50] LIU X R, CHEN W, HONG Y L, et al. Stabilization of atactic-polyacrylonitrile under nitrogen and air as studied by solid-state NMR[J]. Macromolecules, 2015,48:5300-5309.
[51] LIU X R, MAKITA Y, HONG Y L, et al. Chemical reactions and their kinetics of atactic-polyacrylonitrile as revealed by solid-state 13C NMR[J]. Macromolecules, 2017,50:244-253.
[52] WANG Y S, XU L H, WANG M Z, et al. Structural identification of polyacrylonitrile during thermal treatment by selective C-13 labeling and solid-State C-13 NMR spectroscopy[J]. Macromolecules, 2014,47:3901-3908.
doi: 10.1021/ma500727n
[53] JOHNSON D J. Recent advances in studies of carbon-fiber structure[J]. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 1980,294:443-449.
[54] WARNER S B, PEEBLES L H, UHLMANN D R. Oxidative stabilization of acrylic fibers: 1: oxygen-uptake and general-model[J]. Journal of Materials Science, 1979,14:556-564.
doi: 10.1007/BF00772714
[55] WARNER S B, PEEBLES L H, UHLMANN D R. Oxidative stabilization of acrylic fibers: 2: stabilization dynamics[J]. Journal of Materials Science, 1979,14:565-572.
doi: 10.1007/BF00772715
[56] LAYDEN G K. Retrograde core formation during oxidation of polyacrylonitrile filaments[J]. Carbon, 1972,10:59-60.
doi: 10.1016/0008-6223(72)90009-7
[57] JING M, WANG C G, WANG Q, et al. Chemical structure evolution and mechanism during pre-carbonization of PAN-based stabilized fiber in the temperature range of 350-600 ℃[J]. Polymer Degradation and Stability, 2007,92:1737-1742.
doi: 10.1016/j.polymdegradstab.2007.05.020
[58] JODEH S. Chemical structural characterization of pyrolyzed and subsequently ion-implanted poly(acrylonitrile)[J]. Journal of Analytical and Applied Pyrolysis, 2008,82:235-239.
doi: 10.1016/j.jaap.2008.03.014
[59] 钱鑫, 张永刚, 王雪飞. 高温石墨化对碳纤维结构的影响[J]. 高科技纤维与应用, 2016,41(2):24-27.
QIAN Xin, ZHANG Yonggang, WANG Xuefei. Effect of high temperature graphitization on the structure of carbon fiber[J]. High-Tech Fiber and Application, 2016,41(2):24-27.
[60] 韩赞, 张学军, 田艳红, 等. PAN基高模量碳纤维微观结构研究[J]. 航天返回与遥感, 2010,31(5):65-71.
HAN Zan, ZHANG Xuejun, TIAN Yanhong, et al. Study on microstructure of high modulus PAN-based carbon fiber[J]. Space Reture and Remote Sensing, 2010,31(5):65-71.
[61] 张新, 马雷, 李常清, 等. PAN基碳纤维微结构特征的研究[J]. 北京化工大学学报(自然科学版), 2008,35:58-60.
ZHANG Xin, MA Lei, LI Changqing, et al. Study on microstructure characteristics of PAN-based carbon fiber[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2008,35(5):58-60.
[62] 卢天豪, 陆文晴, 童元建. 聚丙烯腈基碳纤维高温石墨化综述[J]. 高科技纤维与应用, 2013,38(3):46-53.
LU Tianhao, LU Wenqing, TONG Yuanjian. Review on graphitization of polyacrylonitrile based carbon fibers at high temperature[J]. High-Tech Fiber and Application, 2013,38(3):46-53.
[63] 童元建, 王统帅, 王小谦, 等. PAN基碳纤维制备过程中的组成演变[J]. 化工新型材料, 2011,39(4):97-99.
TONG Yuanjian, WANG Tongshuai, WANG Xiaoqian, et al. Composition evolution during the PAN-based carbon fiber preparation[J]. New Chemical Material, 2011,39(4):97-99.
[64] 岳中仁. 炭化过程中预氧化 PAN 纤维的热分析[J]. 炭素技术, 1990(2):14-18.
YUE Zhongren. Thermal analysis of PAN fiber preoxidized during carbonization[J]. Carbon Techniques, 1990(2):14-18.
[65] EDIE D D. The effect of processing on the structure and properties of carbon fibers[J]. Carbon, 1998,36:345-362.
doi: 10.1016/S0008-6223(97)00185-1
[66] CHEN J C, HARRISON I R. Modification of polyacrylonitrile (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethyl formamide (DMF)[J]. Carbon, 2002,40:25-45.
doi: 10.1016/S0008-6223(01)00050-1
[67] FITZER E, FROHS W, HEINE M. Optimization of stabilization and carbonization treatment of PAN fibres and structural characterization of the resulting carbon fibres[J]. Carbon, 1986,24:387-395.
doi: 10.1016/0008-6223(86)90257-5
[68] ZHANG W X, LIU J, WU G. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers[J]. Carbon, 2003,41:2805-2812.
[69] LIU J, WANG P H, LI R Y. Continuous carbonization of polyacrylonitrile-based oxidized fibers: aspects on mechanical properties and morphological structure[J]. Journal of Applied Polymer Science, 2010,52:945-950.
doi: 10.1002/app.1994.070520712
[70] MATSUMOTO T. Mesophase pitch and its carbon fibers[J]. Pure and Applied Chemistry, 1985,57:1553-1562.
[71] MITTAL J, MATHUR R B, BAHL O P. Post spinning modification of PAN fibres: a review[J]. Carbon, 1997,35:1713-1721.
doi: 10.1016/S0008-6223(97)00126-7
[72] KOWBEL W, HIPPO E, MURDIE N. Influence of graphitization environment of PAN based carbon-fibers on microstructure[J]. Carbon, 1989,27:219-226.
doi: 10.1016/0008-6223(89)90126-7
[73] RAHAMAN M S A, ISMAIL A F, MUSTAFA A. A review of heat treatment on polyacrylonitrile fiber[J]. Polymer Degradation and Stability, 2007,92:1421-1432.
doi: 10.1016/j.polymdegradstab.2007.03.023
[74] MITTAL J, MATHUR R B, BAHL O P, et al. Post spinning treatment of PAN fibers using succinic acid to produce high performance carbon fibers[J]. Carbon, 1998,36:893-897.
doi: 10.1016/S0008-6223(97)00198-X
[75] LIU F J, WANG H J, XUE L B, et al. Effect of microstructure on the mechanical properties of PAN-based carbon fibers during high-temperature graphitization[J]. Journal of Materials Science, 2008,43:4316-4322.
[76] MINUS M L, KUMAR S. The processing, properties, and structure of carbon fibers[J]. Jom, 2005,57(2):52-58.
[77] LI W W, KANG H L, XU J, et al. Effects of ultra-high temperature treatment on the microstructure of carbon fibers[J]. Chinese Journal of Polymer Science, 2017,35:764-772.
doi: 10.1007/s10118-017-1922-9
[78] 李伟伟, 康宏亮, 徐坚, 等. 高强高模型碳纤维与高模型碳纤维微观结构分析[J]. 高分子学报, 2018,49(3):380-388.
LI Weiwei, KANG Hongliang, XU Jian, et al. Microstructures of high-strength high-modulus carbon fibers and high-modulus carbon fibers[J]. Acta Polymerica Sinica, 2018,49(3):380-388.
[1] 殷聚辉, 郭静, 王艳, 曹政, 管福成, 刘树兴. 基于海藻酸钠/磷虾蛋白的支架材料制备及其性能[J]. 纺织学报, 2021, 42(02): 53-59.
[2] 李娜娜, 鲁清晨, 尹巍巍, 肖长发. 冷却温度对聚偏氟乙烯/超高分子量聚乙烯共混中空纤维膜结构与性能的影响[J]. 纺织学报, 2019, 40(07): 8-12.
[3] 张寅江 王荣武 靳向煜. 湿法水刺可分散材料的结构与性能及其发展趋势[J]. 纺织学报, 2018, 39(06): 167-174.
[4] 李晴碧 刘琴 顾迎春 彭旭 李静静 蒋洁 陈胜. 复合静电纺超细聚丙烯腈纳米纤维的制备[J]. 纺织学报, 2017, 38(11): 16-21.
[5] 李凤艳 邱芳 杨清玉. 基于阳离子改性的四氧化三铁的结构与性能优化[J]. 纺织学报, 2017, 38(08): 81-85.
[6] 武海良 沈艳琴 姚一军 毛宁涛. 低上浆率织造用浆料的配方设计机制[J]. 纺织学报, 2016, 37(12): 60-64.
[7] 丁磊;付少海;张霞;田安丽;王潮霞. 基于相分离技术超细包覆分散染料分散体的制备[J]. 纺织学报, 2011, 32(4): 62-65.
[8] 马晓光;崔河;邢立华. 熔纺氨纶的制备及其结构性能[J]. 纺织学报, 2001, 22(04): 49-51.
[9] 杨涛锋;陈大俊;李瑶君. 熔纺氨纶的结构与性能[J]. 纺织学报, 2000, 21(02): 29-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!