高性能纤维制备及应用
为提高玄武岩织物的抗折性能,首先用原位聚合法制备单层微胶囊,囊壁为三聚氰胺-尿素-甲醛共聚物(MUF),囊芯为环氧树脂;然后将固化剂二氨基二苯砜吸附在单层微胶囊表面,以MUF再次包覆制成双层微胶囊;最后将双层微胶囊涂覆到玄武岩织物表面。测试了微胶囊的微观形貌和化学结构,分析了微胶囊自修复玄武岩织物的自修复性能。结果表明:制备的微胶囊结构致密、表面光滑;当玄武岩纤维受到破坏时,微胶囊破裂流出修复剂和固化剂通过聚合反应生成网络大分子修复裂纹;修复7 d后玄武岩织物的最大断裂强力和折皱回复性能可基本恢复,延伸性能有很大改善,抗折性能得到有效提高。
为探索钴酞菁(CoPc)/碳纳米管(CNT)柔性葡萄糖传感器在葡萄糖检测中的应用,制备了一种CoPc和CNT共修饰的柔性碳纤维织物(CFT)修饰电极,并利用电化学工作站的银/氯化银参比电极和铂对电极与其共同组成三电极体系的葡萄糖传感器。借助扫描电子显微镜对修饰电极进行表征,采用循环伏安法、电化学阻抗图谱法、时间-电流曲线法研究葡萄糖传感器的电化学性能。结果表明:该修饰电极具有良好的导电性和电子转移能力,葡萄糖检测线性范围为4×10-3~2.6 mmol/L,检测限为1.4 μmol/L (信噪比为3),灵敏度为231 μA·L/mmol;该修饰电极在检测葡萄糖时具有较好的重复性,测试10次后其响应电流仍可达到初始值的94.6%,且对果糖、蔗糖、乳糖、半乳糖、抗坏血酸、多巴胺、尿酸等物质具有较强的抗干扰性能。
为拓宽聚乙烯醇(PVA)的应用领域,以聚乙烯醇为增强体,氯化聚乙烯(CPE)和4,4'-甲撑双(2,6-二叔丁基苯酚)(AO 4426)的混合物为基体制备了一系列阻尼复合材料。借助动态热机械分析仪、差示扫描量热仪、傅里叶红外光谱仪、扫描电子显微镜和力学试验机对复合材料的性能和微观形态进行测试与表征。结果表明:添加PVA后复合材料仍保持CPE-AO 4426的双阻尼峰特性,且储能模量和阻尼温域内损耗模量曲线下的面积随PVA质量分数的增大而增大,表明复合材料的阻尼性能获得了较大的改善;PVA的羟基与AO 4426的羟基间形成了氢键,且随着PVA的添加使复合材料的断裂应力和应变均呈先上升后下降趋势。
针对我国目前高度依赖进口石油和聚酰胺66主要原料己二胺被国外公司垄断的局面,顺应我国早日实现碳中和的战略目标,在简要回顾生物基聚酰胺发展历程的基础上,对生物基聚酰胺56纤维的特性作了详细描述,对其制备技术与应用领域的研究进展进行了综述。生物基聚酰胺56纤维具有良好的力学性能、吸湿性、柔软性、耐磨性、染色性、耐热性、耐化学性与阻燃性,适合应用于服装、家纺、产业用纺织品等领域,但生物基聚酰胺56纤维大规模推广还面临生物原料供给与成本控制、生产中能耗降低及副产物综合利用等问题,今后需要继续在生物基单体发酵与纯化、聚合、纺丝及应用等领域加大研发投入,不断降低生产成本,才能促进生物基聚酰胺56纤维在纺织领域的大规模应用。
生物基聚酰胺56(PA56)纤维是由生物基1,5-戊二胺和石油基1,6-己二酸聚合制备而成的新型生物基材料。为探究生物基PA56纤维的热稳定性,分别在氮气氛围中测定其在不同升温速率下的热降解过程,并计算其热降解动力学参数,同时分析了生物基PA56纤维在热降解过程中的主要热降解气相产物。结果表明:生物基PA56纤维的热失重曲线及热降解动力学参数对升温速率具有显著依赖性,采用Kissinger法、Flynn-Wall-Ozawa法和Coasts-Redfern法获得的生物基PA56纤维的活化能分别为235.00、217.23和232.18 kJ/mol,可推测其热降解机制为F1型,热降解过程中产生的主要气相产物为CO2、环戊酮和1,5-戊二胺。
为开发高性能、低成本的锂硫电池正极储硫材料,利用天然生物质纤维兔毛为前驱体,经预处理和炭化制备了具有杂原子掺杂的兔毛中空碳纤维(RC),并采用热熔融法制得硫/兔毛基碳纤维(S/RC)复合材料。探讨了不同炭化温度对碳纤维形貌结构、S/RC复合材料晶型结构与电导率、锂硫电池的电化学性能及循环充放电稳定性的影响。结果表明:预处理温度为300 ℃,炭化温度为800 ℃时,制备的兔毛基中空碳纤维的形貌结构最好,用其作为正极材料制备的电池首次放电比容量达899 mA·h/g,在0.5C倍率下300次循环后放电比容量为598 mA·h/g,仍保持原始比容量的66.52%;在高倍率条件下该电池仍具有较高的放电比容量,1C和2C倍率下放电比容量分别为543.8和505.4 mA·h/g。
为提高活性碳纤维对有色废水的吸附效率,以牛角瓜纤维为前驱体,采用磷酸活化、高温炭化工艺制备了具有高中空结构的活性碳纤维。采用扫描电镜/能谱仪、红外光谱仪等表征其微观形貌及化学结构,分析了所制备活性碳纤维对水溶液中亚甲基蓝的吸附性能与吸附机制。结果表明:牛角瓜活性碳纤维的平均中空度大于92%,具有粗糙表面和发达介孔结构,比表面积和平均孔径分别为1 244.812 m 2/g和3.744 nm;活性碳纤维表面富含O、P元素,构成了活性表面;亚甲基蓝溶液(100 mg/L)的饱和吸附量为198.840 mg/g,该吸附满足准二级动力学方程,同时符合Freundlich模型,以多层吸附为主。
为增强聚酰亚胺纤维的力学性能,促进其在复合材料领域的应用,基于高性能聚合物纤维的结构设计,将杂环二胺单体5-氨基-2- (对氨基苯基)苯并咪唑引入到3,3',4,4'-联苯四羧酸二酐和对苯二胺的聚酰亚胺刚性骨架中得到纺丝溶液,通过干法纺丝技术制备得到聚酰亚胺纤维,研究了纤维化学结构和聚集态结构与纤维力学性能的关系,并系统评价了纤维的热性能和抗紫外光辐照性能。结果表明:聚酰亚胺纤维的拉伸强度和初始模量分别达到4.04、130 GPa,这得益于其聚合物分子链沿纤维轴向的高度取向性及分子链间形成的氢键作用;其玻璃化转变温度和热质量损失10%时温度分别为324、587 ℃,经168 h 紫外光辐照后,拉伸强度保持率为92%,具有良好的耐热性和优异的抗紫外光辐照性能。
为更加真实地模拟芳纶织物在受到冲击时产生的交织阻力变化情况,通过构建一个半经验模型来预测对于不同规格、不同预加张力情况下纱线交织阻力的数值,并设计了可调预加张力的纱线抽拔实验用夹具,分别以织物的经向宽度、纬向宽度和预加张力为变量对纱线进行抽拔实验。实验结果表明:对织物施加横向预加张力与纱线抽拔时的交织阻力呈正相关,预加张力逐渐增大时,织物纬向宽度对交织阻力的影响逐渐增强;反之,交织阻力随着织物的经向宽度的增加会逐渐减小,而相较于经向宽度的影响,织物预加张力对于交织阻力的影响显得更为突出。
为提高F-12芳纶织物与橡胶之间的粘结性能,采用环氧树脂和偶联剂A187对F-12芳纶织物进行改性。通过成膜分析确定出环氧树脂的最佳用量;通过改性后F-12芳纶织物的浸水高度以及浸渍间苯二酚-甲醛树脂乳液后的拉伸强度和断裂强度测试,确定出偶联剂A187的最佳用量。在此基础上,对改性后的F-12芳纶织物进行硫化成型,测试织物与橡胶的剥离强度确定出最佳改性工艺。结果表明:环氧树脂用量为25%(o.w.f),偶联剂A187用量为1.2%(o.w.f)时,制备的F-12芳纶织物轻薄输送带的综合性能最佳;改性后浸水高度值最低的F-12芳纶织物制备的轻薄输送带的剥离强力达到最高,为12.1 N/mm,其剥离强度高于行业标准;制备的单层铺层输送带的扯断强力为6 495.25 N,断裂伸长率为13%,双层铺层输送带的扯断强力为14 493.25 N,断裂伸长率为14%。
为提升玄武岩纤维与基体的界面相容性,采用偶联剂KH550改性后的纳米SiO2对玄武岩纤维表面进行粗糙化改性处理。分析了改性前后玄武岩纤维的表面形貌和化学结构,研究了纳米SiO2质量分数对玄武岩纤维力学性能、摩擦因数、吸湿性能的影响。结果表明:经纳米SiO2改性后,玄武岩纤维表面的粗糙度和比表面积增大,摩擦性能和吸湿性能显著增加,在纳米SiO2质量分数为5%时,玄武岩纤维摩擦因数由0.255提升至0.280,透湿率也提高至0.65%;与未改性的玄武岩纤维相比,改性后的玄武岩纤维表面出现了C—H键,且Si—O—Si键对应的振动峰强度变强,提高了纤维表面的极性;改性后玄武岩纤维的拉伸力学性能有一定提高,随着纳米SiO2质量分数的增加,玄武岩纤维的力学性能先上升后下降,当纳米SiO2质量分数为3% 时,其拉伸断裂强度最高可达40 cN/tex。
为提高超高分子量聚乙烯(UHMWPE)纤维的阻燃性能,采用兼具阻燃和抑烟作用的氢氧化镁包覆碳微球(MH-CMSs)作为阻燃剂,以钛酸四丁酯和亚磷酸三苯酯作为活化剂,依次通过除杂—活化—浸轧—烘焙的方法对UHMWPE纤维进行阻燃改性。测试了纤维的阻燃性能、力学性能以及热稳定性,研究其阻燃作用机制。结果表明:该方法能在不损害UHMWPE纤维力学性能的同时有效提高其阻燃性能;与纯UHMWPE纤维相比,经阻燃整理后得到的FR-UHMWPE纤维的极限氧指数(LOI值)可提高36%以上,峰值热释放速率降低幅度达39.3%,且纤维的发烟和熔滴现象也得到改善,火灾危险性显著降低;FR-UHMWPE纤维表现出凝聚相阻燃机制,阻燃整理促进了UHMWPE热降解成炭,使其在燃烧时形成了致密连续的炭层,该炭层能有效阻止热与质的传递,从而起到阻燃作用。
为研究梯度结构活性碳纤维毡的吸声性能,选取5种不同密度的粘胶基活性碳纤维毡,两两组合构成梯度结构,借助阻抗管在250~6 300 Hz频率声波范围内,对梯度结构活性碳纤维毡法向入射吸声系数进行测试,分析梯度方向、密度、结构对吸声性能的影响。结果表明:总密度相同的情况下,在低频段单一结构活性碳纤维毡吸声性能比正梯度结构好,但比倒梯度结构差,而在高频段单一结构吸声性能比正梯度结构差,但比倒梯度结构好;总密度不同的情况下,在低频段随着梯度结构总密度的增加,其吸声系数增加,而在高频段随着梯度结构第1层密度的增加,其吸声系数减小;随着活性碳纤维毡第1层密度的增加,第一共振频率向低频移动,随着总密度的增加,第一共振吸声系数增加。
针对超高分子量聚乙烯(UHMWPE)纤维熔点低、易蠕变等不足,以油田井下作业环境为测试条件,研究了UHMWPE纤维在干热和湿热状态下的力学稳定性能,借助差示扫描量热仪、热重分析仪、扫描电子显微镜、X射线衍射仪和电子能谱分析仪,表征并分析了UHMWPE纤维的热学性能和微观结构。结果表明:UHMWPE纤维表面在热和处理液的刻蚀作用下产生明显的沟槽;在相同的温度下处理,湿热状态下纤维的力学性能损失比干态下小,尤其在70 ℃下湿热连续处理30 d,纤维强力下降率基本控制在6%以内;对纤维进行干热处理,当温度接近纤维熔点时,随着温度的升高,纤维强力下降明显,140 ℃下干热处理1 h,强力最大下降率达19.87%。
为提高酚醛基纳米活性碳纤维的吸附性能,首先采用乙酸锌、硫酸双催化合成高邻位酚醛树脂,然后配制酚醛/聚乙烯醇缩丁醛(PVB)混合溶液,采用静电纺丝、固化、炭化和活化工艺制备得到柔性高邻位酚醛基纳米活性碳纤维,借助傅里叶变换红外光谱仪、扫描电子显微镜、热重分析仪、比表面积及孔径分析仪对其结构和性能进行测试与分析。结果表明:静电纺丝制备的酚醛初生纤维在溶液固化后,酚环对位取代增加,纤维内发生了分子间交联,但PVB有一定的醇解,使酚醛纤维在炭化过程中低温稳定性下降,而高温残碳率升高,炭化后制备得到多孔碳纤维;活化后得到的高邻位酚醛基纳米活性碳纤维比表面积为1 409 m2/g,其对亚甲基蓝及碘的吸附量分别达到837和2 641 mg/g。
针对碳纤维表面极性官能团少,化学活性低,与基体间的界面结合强度弱等问题,综述了国内外关于电泳沉积碳纳米管和氧化石墨烯修饰碳纤维提高其复合材料力学性能的最新研究进展。阐述了在不同的电泳沉积工艺下,分别在碳纤维表面引入碳纳米管和氧化石墨烯,对修饰碳纤维表面及其复合材料力学性能的影响。总结了影响电泳沉积修饰碳纤维效果的因素,并提出了相应的建议。展望了电泳沉积修饰碳纤维表面的研究发展方向,指出对碳纤维、碳纳米管和氧化石墨烯进行预处理,添加辅助工艺的电泳沉积设备制造将会成为未来的重要研究方向。
针对碳纤维丝束在织造过程中易出现断经和起毛的问题,提出在碳纤维丝束表面镀铜以提高丝束耐磨性。首先在Solidworks中建立树脂基碳纤维丝束细观模型,利用ABAQUS对开口时碳纤维丝束与镀铜综丝眼之间的滑动摩擦损伤进行仿真模拟,并运用纤维复合材料渐进损伤失效模型进行损伤演化分析;将树脂基碳纤维丝束改为镀铜碳纤维丝束,通过拉伸模拟验证了丝束模型的可行性,运用Archard模型对镀铜碳纤维丝束进行耐磨性仿真模拟;最后在ABAQUS中模拟仿真纤维的硬挺度。结果表明:当镀铜层厚度为1.0 μm时,仿真预测的镀铜碳纤维丝束耐磨次数约是上浆碳纤维丝束(上浆率为0.32%、浆液质量分数为3%)耐磨次数的2倍;在碳纤维丝束表面镀0.5~1.0 μm的铜层时具有良好的可织性。
为研究树脂材料的防刺性能及防刺机制,利用手糊成型与热压法成型制备了手糊分层结构和均布结构层2种结构的人造金刚石填充聚酰亚胺树脂基复合树脂片,并探讨了人造金刚石粒径、填充体积分数对树脂片防刺性能的影响。研究结果表明:经过人造金刚石填充的聚酰亚胺树脂片的防刺性能得到提高,并且均布结构层分层复合结构的树脂片的防刺性能更好;随着人造金刚石粒径的减小,树脂片防刺性能出现先减小后增加的趋势,故防刺机制基本在于碰撞概率与树脂基的防挡;比较防刺力和消耗功发现,不同填充体积分数的单层防刺树脂片的防刺性能随人造金刚石填充体积分数的增加而逐渐降低,该趋势的成因在于复合树脂片的脆化与破坏;在颗粒等效粒径为300 μm、体积分数为10%时,其防刺性能最好。
为提高聚氨酯泡沫的阻燃性能,采用磷酸改性芳纶对聚氨酯硬质泡沫进行阻燃改性,借助氧指数仪、烟密度仪、锥形量热仪、热重分析仪等对改性前后聚氨酯硬质泡沫的阻燃性能、产烟行为、燃烧行为、热稳定性和力学性能进行表征。结果表明:添加改性芳纶的聚氨酯泡沫具有更好的阻燃、抑烟和力学性能;相对于纯聚氨酯泡沫,添加质量分数为5%改性芳纶的聚氨酯泡沫的极限氧指数提高了15.8%,最大烟密度、最大燃烧热释放速率、热释放量、最大生烟速率、产烟量分别降低了25%、25.3%、10%、35.7%、47.3%;改性芳纶的添加有利于改善聚氨酯硬质泡沫的热稳定性,使其在700 ℃时的残炭率增加为14.5%。
为提高聚苯胺导电层与基材之间的黏结牢度,以聚乙烯醇为共混高聚物,通过连续原位聚合法在对位芳纶纱线表面形成聚乙烯醇/聚苯胺导电层,制备得到芳纶/聚苯胺/聚乙烯醇复合导电纱。分析了导电纱的结构与性能,并研究了聚乙烯醇对聚苯胺导电层耐水洗和耐磨性的影响。结果表明:适量添加聚乙烯醇有助于提高导电纱导电层的结构规整性及电导率,随着聚乙烯醇质量分数的提高,导电纱的电导率呈先上升后下降的趋势,当聚乙烯醇占苯胺的质量分数为4.30%时,制得的复合导电纱线的电导率最高,达到(1.120±0.198) S/cm;聚乙烯醇的添加和质量分数的提高,有助于聚苯胺导电层耐水洗性及在较小外力作用下的耐磨性的提高。
针对碳纤维预浸料表面缺陷人工检测方法效率低、成本高、实时性差等问题,提出基于机器视觉的碳纤维预浸料表面缺陷自动检测方法。首先,在碳纤维预浸料生产线上,采用2台高分辨率线扫描相机快速连续采集图像,从中随机选择带有缺陷的图像1 000张;其次,基于大气光散射模型对图像进行去雾增强处理,以消除白色树脂的干扰;然后,改进具有19个卷积层和5个最大值池化层的YOLOv2目标检测算法,用于缺陷的检测;最后,对预处理后的图像进行网络训练提取图像特征,识别图像目标,并对训练好的网络进行实验验证。结果表明:该方法在复杂的工业环境下,具有较高的识别精度和鲁棒性,识别成功率达到94%以上,且每张图像的检测时间不超过 0.1 s,可满足工业生产中精度和实时性要求。
为实现防刺服的轻量化以提高可穿戴性,用剪切增稠液 (STF) 浸渍不同结构的芳纶织物制备柔性防刺材料,探究织物结构对STF/芳纶复合织物防刺性能的影响。借助流变仪、扫描电子显微镜、万能强力仪对STF的流变性及STF/芳纶复合织物的形貌、纱线抽拔力、准静态锥刺和刀刺性能进行表征。结果表明:STF的流变性能随着分散相质量分数的增加而明显增强;经STF浸渍后各织物的防刺性能都有明显提升,经纬密度较大的平纹织物表现出较优的抗锥和抗刀刺性能,其中最大抗锥刺和抗刀刺力分别为993.75 N和687.50 N;STF的剪切增稠作用能有效提高纤维间的摩擦从而限制纱线滑移,且随着织物交织点数增多,纱线间摩擦力增大;斜纹复合织物的刀刺性能提升最为明显,提升了387%,因为斜纹织物较长的浮长线能有效抵抗刀刃的切割作用。
为解决超高分子量聚乙烯(UHMWPE)纤维难以上染的问题,筛选出结构平面性良好的高疏水染料对UHMWPE纤维进行染色。通过染色后纤维K/S值、染料与纤维的亲和力、分配系数、染色热和染色熵等热力学参数的测定,研究了高疏水染料结构中疏水基团数目及其链长、硝基等强极性基团对纤维染色性能的影响规律,并分析了染料溶解度参数对其与纤维染色性能之间的相关性。结果表明:高疏水染料对UHMWPE纤维染色可获得高表观深度;染料的疏水性及其溶解度参数是影响其对UHMWPE纤维染色性能的重要因素;就染料母体结构而言,偶氮结构较蒽醌结构对UHMWPE纤维易于获得良好的染色性能。
为制备一种生物相容性高的医疗级可穿戴电子服装用人体心电(ECG)监测电极,以碳纤维/涤纶复合长丝为电极导电材料,采用刺绣法开发了一种新型刺绣电极,对电极的电学性能和细胞毒性进行分析,并与镀银锦纶/涤纶刺绣电极进行对比;借助自行研发的可穿戴带式心电监测系统评价织物电极采集ECG信号质量。结果表明:镀银电极电学性能较优,但在长期心电信号监测中,碳基电极的阻抗变化与镀银电极相近;对比医用凝胶电极,2种刺绣电极采集到的ECG信号质量良好,均能满足医疗诊断需求;镀银电极具有很强的细胞毒性,其细胞存活率为3%,而碳基电极的细胞存活率为107%,细胞毒性为0级,具有良好生物相容性,符合医疗体外材料测试标准。
针对中国高性能聚丙烯腈(PAN)基碳纤维产业技术发展现状和存在的问题,就其生产过程中的一些基础问题进行总结,提出了研究和产业发展建议。在PAN原丝纺丝溶液制备过程中,可通过聚合工艺和设备的协同,实现PAN连续溶液聚合,得到均匀的PAN纺丝溶液。在原丝制备过程中,可通过凝固参数控制,调控PAN纺丝溶液细流的相分离过程,减小相分离过程形成的微孔尺寸;在干燥致密化和干热牵伸过程中,调控温湿度和张力,可控制微孔融合和PAN分子结晶与取向,制备出高品质碳纤维原丝。在预氧化和炭化过程中,通过对温度场和应力场的调控,控制预氧化过程的皮芯结构和炭化过程中的乱层石墨结构,可实现对碳纤维性能调控。
为提升芳纶织物的防穿刺效果,采用氧等离子体表面处理技术改性的芳纶1414织物与环氧树脂复合制备环氧芳纶复合体。分析了等离子体处理对织物功能改性的影响,研究了环氧树脂涂覆织物后复合体的防刺性能。结果表明:采用氧等离子体处理,在处理功率为600 W、处理18 min时,织物表面纤维刻蚀明显,含氧基团增多,润湿性提高,但织物拉伸强度有所下降;当环氧树脂涂覆在等离子体改性后的芳纶织物上,树脂中环氧基团与芳纶中含氧活性基团键合牢固,复合体黏结强度较好,拉伸强度较未经处理的芳纶织物增加了7.89%,复合体防穿刺效果较普通芳纶1414织物提升显著,且多层组合结构的防刺效果更优异。
为研究SiO2气凝胶对芳纶非织造布抗压、阻燃防护功能的影响,以芳纶非织造布为骨架材料,将SiO2气凝胶施加到芳纶非织造布表面,制备出SiO2气凝胶混杂芳纶非织造布防护材料。通过扫描电子显微镜对其结构形貌进行表征,借助万能材料试验机对其抗压性能进行分析,最后利用热常数分析仪和火焰手系统,测试并评估了制备的防护材料的阻燃隔热性能。结果表明:SiO2气凝胶以不同大小的块状、颗粒状填充进入芳纶非织造布纤维间的空隙;SiO2气凝胶可增强芳纶非织造布的抗压性能,且降低其导热系数;混杂SiO2气凝胶后芳纶非织造布总的吸收能量值降低,说明SiO2气凝胶可明显增强芳纶非织造布的热防护效果。
为提高芳纶过滤材料的过滤效率,以添加不同质量分数纳米陶瓷粉的聚四氟乙烯乳液为涂层剂主要原料,采用发泡剂发泡涂层法对芳纶材料进行表面涂层处理。研究了泡沫涂层对芳纶过滤材料的结构、耐摩擦性、透气性、孔径大小、拒水拒酸碱性以及过滤性能的影响。结果表明:经发泡涂层整理后,芳纶表面形成一层致密薄膜;纳米陶瓷粉质量分数越大,发泡剂发泡效果越好,薄膜愈致密且稳定,同时芳纶过滤材料的耐摩擦性愈好,其孔径大小及透气性略有下降;涂层提高了芳纶的拒酸、拒碱性能,有效减少了滤袋的糊袋,使其清灰性及使用寿命均有所提升;涂层后芳纶的过滤效率显著提高,过滤直径为1 μm以上颗粒物的过滤效率由39.1%提升到60%左右,且过滤直径为10 μm以上颗粒物的过滤效率可达到100%。
为增强聚酰亚胺纤维的界面黏附性能,采用氧等离子体技术对聚酰亚胺纤维进行不同时间的改性处理,借助X射线光电子能谱仪、场发射扫描电子显微镜、接触角表面性能测定仪,以及单纤维碎裂法等分析改性处理对聚酰亚胺纤维表面性能的影响。结果表明:在气压为10 Pa,功率为100 W的工艺条件下,采用氧等离子体处理4 min时聚酰亚胺纤维表面改性效果最佳;与原丝相比,此时纤维表面O与C元素含量比增加了108%,含氧基团C—O、C=O的含量分别由7.6%、10.3%增加到20.4%、19.2%;纤维表面产生均匀致密的微裂缝,其与树脂间界面剪切强度由29.88 MPa增加到46.13 MPa,增强率达54%;聚酰亚胺纤维与水的接触角从110°左右减小至55°以下,由疏水表面变为亲水表面。
为进一步探究编织结构与长度对复合材料圆管压缩性能的影响,采用树脂传递模塑成型工艺复合二维编织铺层与三维四向编织圆管,通过轴向准静态压缩试验获取了4种复合材料圆管试样的压缩力学行为。结合高速摄影记录,分析了编织复合材料圆管的破坏过程及失效模式,探索其压缩失效机制。结果显示:试样均表现出弹塑性特征,但三维编织圆管呈现出更好的压缩承载特性,其压缩模量与载荷峰值分别达到5.91 GPa与14.23 kN;试样呈现出纤维断裂、基体开裂脱黏、瓣状破坏、剪切以及挤压屈曲等破坏模式中的几种或全部的组合;二维编织复合材料圆管的渐进失效特征更为明显,具有较好的吸能特性,且其压缩模量随管件长度的增加而有所提升,但是吸能效果与试样长度呈非线性关系。
为开发出一种柔性防护材料,采用超高分子量聚乙烯纤维(UHMWPE)与芳纶制备的平纹织物作为增强面板,软式聚氨酯(PU)作为芯材,利用纺织技术与一体发泡技术相结合制备了具有良好缓冲性能的夹芯结构柔性复合材料。同时,选用面密度相同的锦纶非织造布及玄武岩平纹布作为增强面板对比材料,对3类夹芯复合材料进行静态与动态力学性能测试。结果表明:芳纶/UHMWPE织物增强夹芯复合材料的力学性能优良,经向拉伸断裂强力为1 930 N,断裂伸长率为5.8%;纬向拉伸断裂强力为1 744 N,断裂伸长率为6.5%;在7.5 mm处进入压实阶段,压缩形变为93%;冲击破坏强力为1 260 N, 吸收的总能量为13.4 J,能量密度为4.95 J/g;芳纶/UHMWPE织物增强夹芯复合材料在保证质轻的基础上,具有良好的能量吸收效果。
针对聚偏氟乙烯(PVDF)膜强度与渗透性能难以同步提高的问题,以矿物油和邻苯二甲酸二丁酯为复合稀释剂,通过热致相分离法制备了PVDF/超高分子量聚乙烯(UHMWPE)共混中空纤维膜,探究不同冷却温度对膜形貌及孔结构的影响,并通过气通量、水通量及拉伸强力测试表征了中空纤维膜的渗透性能与力学性能。结果表明:原纤状UHMWPE增加了PVDF球晶聚集体的连接性;冷却温度对共混中空纤维膜的结构与性能影响显著;随着冷却温度的升高,PVDF/邻苯二甲酸二丁酯和UHMWPE/矿物油的相分离与结晶时间均延长,纤维膜的平均孔径和孔隙率增加,渗透性能改善,但大孔的出现和UHMWPE原纤数量的减少使纤维膜的力学性能下降。
针对目前市场上的防刺服价格高、柔韧性差、难以在军民领域得到普及的问题,通过在涤纶机织物上涂覆不同粒径的碳化硅(SiC)颗粒制得了一种柔性防刺复合材料,涂覆方式分为单次涂覆和双次涂覆。通过扫描电子显微镜观察和多层动态穿刺性能测试研究了SiC颗粒大小和涂覆方式对该复合材料防刺性能的影响,并且分析了6层单面双层涂覆方式制备的柔性防刺复合材料的耗散吸能模式。结果表明:采用180 μm SiC颗粒制得的复合材料防刺性能最好;当采用双次涂覆方式时,采用单面双层涂覆方式制得的复合材料防刺性能优于采用双面单层涂覆方式;单面双层涂覆方式制备的复合材料主要有2种能量耗散模式。
为有效回收碳纤维树脂基复合材料,避免资源浪费和环境污染,综述了热固性和热塑性树脂基碳纤维复合材料的不同回收方法及其进展,包括物理机械法、热回收法、溶剂解离法、熔融注塑和切片再塑法等,梳理了溶剂解离法的回收思路,介绍了针对碳纤维复合材料回收的可降解热固性树脂及回收方法,阐述了碳纤维增强热塑性树脂的回收机制。总结了目前碳纤维增强热固性树脂回收方法的回收效率低,设备要求高,再生碳纤维性能下降等特点,认为碳纤维增强热塑性树脂具备快速成型、成本低、能够多次回收利用的特点,适于碳纤维复合材料在民用领域大量应用的发展趋势。
为研究纺织材料在热流冲击下的热传递性能,以碳纤维平纹织物为例,利用电子显微镜获得纱线的几何结构参数、经纬纱交织路径及横截面形状,建立碳纤维织物单元结构模型,基于传热学的基本方程,利用有限元法数值求解织物厚度方向上的温度随时间变化曲线。结果表明:利用创建的热流冲击下织物热传递数值模型可预测织物背面温度随时间变化的情况;试验验证发现,利用数值模型计算获得的织物背面温度随时间的变化趋势与试验结果一致,当织物表面分别施加热流密度为1 319 W/m2和1 103 W/m2时,织物背面温度的模拟值和试验值的平均相对误差分别为6.64%和3.28%。说明所建立的数值模型能较好地反映碳纤维平纹织物动态传热过程,可为高温热流冲击下隔热耐烧蚀织物的开发和性能优化提供理论参考。
为提高鞋中底基材的抗穿刺性与柔韧性,降低成本,通过玄武岩基机织物增强和热压加固的工艺制备抗穿刺鞋中底基材,分析了低熔点聚酯纤维比例对鞋中底基材拉伸、顶破和静态穿刺头A、B、C性能的影响。结果表明:随着低熔点聚酯纤维(LMPET)含量的增加,抗穿刺强力先增强后逐渐减弱;当低熔点纤维含量为30%时,鞋中底基材的拉伸载荷为793.6 N(未热压)和759.9 N(热压),顶破载荷为445.5 N(未热压)和767.9 N(热压);鞋中底基材对不同形状的穿刺头的平均静态抗穿刺力分别为329.0 N(未热压)和392.4 N(热压);热黏合加固对顶破和抗穿刺性能的提升效果显著。
随着可穿戴技术的快速发展,对柔性锂电池的需求日益增加,将电化学性能优异的活性电极材料与柔性纳米碳基材料进行复合,是目前制备高性能柔性锂电池电极的热门研究方向。本文主要对碳纤维及其织物在锂离子和锂硫电池柔性电极材料中的研究与应用情况进行综述,总结了制备柔性复合电极材料的不同方法及其进展,包括静电纺丝技术、水热法、热处理、涂覆、磁控溅射、原子层沉积和热刻蚀等,所获得的电极材料均在某方面表现出优异性能,例如可逆容量高、循环性能优异、力学强度增强等。最后对基于碳纤维及其织物的柔性锂电池电极的未来发展提出了展望。
为提高芳纶的导电能力,以芳纶长丝纱为基材,采用一种基于原位聚合法的纱线连续导电处理方法制备芳纶/聚苯胺复合导电纱线。并以导电芳纶为增强体,以不饱和聚酯树脂为基体,制备了二轴向、三轴向和四轴向导电芳纶增强复合材料,研究了其电磁屏蔽性能。结果表明:经导电处理后,芳纶纤维表面附着一层导电聚苯胺,其电导率可达1.4~1.9 S/cm,力学性能稍有下降;多轴向导电芳纶增强复合材料其屏蔽效能值随着导电芳纶轴向数和排列密度的增大而提高,当导电芳纶排列密度达到70 根/(5 cm)时,四轴向导电芳纶增强复合材料对0.1~1.5 GHz范围内电磁波的平均电磁屏蔽效能达到22 dB。
为提高聚乳酸复合材料的力学性能,以玄武岩织物(BF)为增强材料,聚乳酸(PLA)为基体材料,采用真空灌注法制备玄武岩织物增强聚乳酸复合材料。研究了偶联剂KH550质量分数、铺层层数、铺层角度对BF/PLA复合材料拉伸断裂性能的影响,并借助扫描电子显微镜对复合材料拉伸实验后的断裂形貌图进行分析。结果表明:随着KH550质量分数的增加,BF/PLA复合材料的拉伸断裂强度出现先增大后减小的趋势,且KH550质量分数为3%时处理效果最佳,此时复合材料的拉伸断裂强度提高到82 MPa,且断面整齐;玄武岩织物铺层角度为0°和90°时,复合材料的拉伸断裂性能较优,45°铺设时最差,且拉伸实验后层间分离现象明显;在一定范围内复合材料的断裂强度随玄武岩织物铺层层数的增加而增加。
为开发兼具电损耗和磁损耗的新型轻质柔软吸波复合材料,采用聚丙烯腈(PAN)基预氧丝毡浸渍金属盐溶液,经高温处理工艺制备了磁性颗粒/碳纤维轻质柔软复合材料。通过弓形法吸波测试、X射线衍射、X射线能谱分析、扫描电子显微镜观察等方法对材料性能进行表征和分析。结果表明:所制备的复合材料由碳纤维和具有磁损耗性能的Fe—Co—Ni、Fe3O4、Fe—Ni、Fe—Co等颗粒组成,磁性颗粒沿着纤维轴向均匀分布,电损耗与磁损耗间的协同作用使磁性颗粒/碳纤维复合材料表现出优异的吸波性能。当处理温度为650 ℃和700 ℃时,试样电磁波发射损耗小于-5 dB的吸收波段分别为8.6~18 GHz和10~18 GHz,电磁波反射损耗小于-10 dB的吸收波段分别为13.9~18 GHz和14~18 GHz。结果表明,过高或过低的处理温度会降低材料电磁波损耗,通过调节处理温度可控制材料的吸波性能。
针对玄武岩纤维表面光滑、集束性差且呈化学惰性,纤维浸润性差导致其与浆液黏附力不足的缺陷,采用低温等离子体技术改性玄武岩长丝表面,以改善玄武岩长丝浆丝时集束性能。探讨放电功率、放电气压及放电时间对玄武岩长丝表面形态、静摩擦因数、动摩擦因数及力学性能的影响,借助扫描电子显微镜对改性玄武岩长丝的表观形貌进行表征,分析改性玄武岩长丝与纺织浆料黏附性能的关系。结果表明:低温等离子体改性后玄武岩长丝表面粗糙程度提高,比表面积增大,摩擦因数增加,玄武岩长丝与纺织浆料的黏附性增强,集束性明显改善;当放电功率为300 W,放电气压为30 Pa,放电时间为7 min 时,改性玄武岩长丝上浆率高,浆丝集束性好。
为改善芳纶纤维与树脂基体之间的黏结性,采用氮气冷等离子体技术对芳纶纤维进行改性,借助扫描电子显微镜、原子力显微镜、X射线光电子能谱仪及接触角测量仪观察和分析纤维的表面形貌、化学组分、表面润湿性及表面能的变化。结果表明:样品处理后24 h内,纤维表面粗糙度提高,C 含量减少,N 和 O 含量增加,接触角由疏水转变为亲水,表面能增大;随着放置时间的延长,纤维表面粗糙度保持不变,非极性基团C—C 和C—H 含量增加,极性基团C—N、C—O 和NH—CO 含量减少,表面能降低,接触角增大,最后趋于稳定;放置28 d 后,接触角比未处理纤维降低了27.8°,表面能提升了87%,表明冷等离子体对表面的刻蚀和改性是永久的。
为增强芳纶机织物的纬纱交织阻力,将纱罗组织和平纹组织结合,以提升纬纱对横向抽拔作用的抵御能力。通过准静态纱线抽拔试验发现:在交织阻力位移曲线的退屈曲区内,纬纱的最大交织阻力和经纬纱屈曲交换程度密切相关;在黏滑区内,曲线呈现出一种震荡衰减趋势;纱线所受的交织阻力和被抽拔纱线根数几乎呈线性关系;同时抽拔2 根、3 根和4 根纱线的最大交织阻力对比于单纱抽拔的最大交织阻力的增幅分别是160% 、289% 和 389% ;纱罗组织的引入,有效增强了经纱对纬纱的握持性能。单纱抽拔试验结果表明,平纹/纱罗复合结构织物的纬纱所受最大交织阻力比平纹结构增加约20% 。多纱抽拔试验结果表明,交织阻力的最大增量约为65% 。
为提升超高分子量聚乙烯织物的防锥刺性能,采用剪切增稠液对织物进行浸渍复合,制备了柔性液体防 护材料。采用落锤实验测试了不同密度的超高分子量聚乙烯织物及与剪切增稠液复合后织物的防锥刺性能,研究了不同质量分数剪切增稠液的流变性能和浸渍后织物的纱线抽拔性能,并分析了织物复合后的增强机制。实验结果表明:剪切增稠液的增稠效果随着分散相质量分数的增加而增强,剪切增稠液浸渍后织物的纱线抽拔力提高了3.1倍,经剪切增稠液浸渍的织物具有更好的防锥刺效果。剪切增稠液显著提高了纱线的摩擦力,并限制纱线滑移,从而具有更好的防锥刺效果。
针对碳纤维在二维编织过程中不耐扭折、易受损断纱的问题,通过拉伸性能实验和导纱瓷眼折角磨损实验分析了碳纤维复丝的可编织性能,探讨了纱管在缠绕过程中应注意的问题。在24 锭二维编织机上编织了8 种不同工艺参数的碳纤维管状编织物,研究了编织工艺对织物外观起毛情况及力学性能的影响。结果表明:碳纤维复丝的断裂强度为86.39 cN/tex,断裂伸长率为1.12%,断裂强度远高于其他纤维,但延伸性差;影响碳纤维复丝在导纱瓷眼处折角磨损程度的因素依次为牵引力、折角、编织速度;在编织纱线根数不变的情况下,随编织节距的减小,管状编织物的面密度逐渐增加,起毛现象严重,编织物的拉伸断裂强力降低。
针对间位芳纶织物导湿排汗性能差而影响穿着舒适性的问题,采用酸性高锰酸钾和等离子体2 种改性方法分别处理芳纶织物,并对改性后的织物进行导湿排汗整理。结果表明:酸性高锰酸钾改性后纤维表面裂痕较深且数量较多,质量损失较大;等离子体改性后表面含有更多的氧元素和极性基团,整理后其含量进一步提高,其中羟基含量增加最多;改性后断裂强力和断裂伸长率略有下降,整理后有所回升;整理后织物的回潮率增大,导湿性、透湿性、透气性及抗静电性均得到改善;改性后再整理织物的耐洗性明显好于未改性仅整理的织物;改性和整理均不会损害织物的阻燃性,阻燃性反而有所提高。
为推进高性能聚酰亚胺纤维在纺织材料领域的应用发展,分析了5 种商业化聚酰亚胺纤维的微观结构和力学性能,并通过全自动剑杆小样织机对其可织造性能进行了研究。借助红外光谱仪、X 射线衍射仪、扫描电子显微镜、纤维强伸度仪和纱线抱合力机对纤维的结构和性能进行表征。结果表明:5 种聚酰亚胺纤维中强度及模量最高纤维的亚胺化程度为97.26%,结晶度为19.27%,取向度为0.92,以上结构参数赋予其优异的力学性能,其强度和模量分别为2 239.24 MPa 和56.62 GPa,但伸长率较小,仅为4.03%;该纤维表面光滑、致密、具有明显的原纤结构,但耐磨性差,对其织造性能和织物表观形貌具有一定影响。
为提高超高分子量聚乙烯织物的疏水性能,基于荷叶效应原理,采用涂层方法在织物表面构筑纳米微米结构。将二氧化硅气凝胶分散于聚偏氟乙烯(PVDF)溶液中制成涂层液,并对超高分子量聚乙烯织物进行涂层处理。借助X 射线光电子能谱仪、扫描电子显微镜、原子力显微镜等测试织物表面的化学组成及微结构,并采用集灰实验测定织物的自清洁性能。结果表明:当PVDF质量分数为12%、二氧化硅气凝胶质量分数为8% 时,涂层织物表面的最大接触角为157.8°,滚动角为3°;涂层膜表面有微米级突起和纳米级颗粒状突起;水滴可将涂层后织物表面的污物带走,织物具有良好的自清洁效果。
为获得仿生树型结构的超高分子量聚乙烯(UHMWPE)非织造复合材料,采用针刺水刺复合技术制备聚对苯二甲酸乙二醇酯/ 聚酰胺6 中空橘瓣型双组分超细纤维层夹持UHMWPE长丝层的树型柔性防刺复合材料,并对样品形态结构和理化性能进行表征。结果表明:超细纤维以纤维簇的形式在UHMWPE长丝层内形成超细纤维通道,UHMWPE长丝层与两侧超细纤维层在针刺和水刺的冲击作用下紧密缠结成仿生树型结构;针刺密度和针刺深度对透湿率有显著影响, 在针刺密度为274.37 刺/cm2, 针刺深度为7.70 mm 时, 样品透湿率为889.20 g/(m2?24 h);建立的二次方模型的置信度高,可用于仿生树型UHMWPE柔性防刺复合材料透湿性能的理论分析
为提高聚酰亚胺织物的服用性能,采用碱剂对聚酰亚胺织物表面进行羧基化改性处理。借助X 射线光电子能谱、红外光谱、热重、热阻、湿阻等测试手段研究了碱处理后聚酰亚胺织物的性能,并探讨了阳离子染料对其的染色性能。结果表明:碱处理可对聚酰亚胺纤维进行有效的改性;碱处理在聚酰亚胺纤维表面引入大量氧元素,纤维分子中引入了羧基和酰胺酸;改性后聚酰亚胺织物热稳定性保持良好;碱处理后聚酰亚胺织物热阻、湿阻略有下降,极限氧指数可达到37%,阻燃性能优异;聚酰亚胺纤维羧基化改性增加了阳离子染料的亲和力,平衡上染百分率显著提高,染色吸附等温线符合Langmuir 吸附模型。