纺织学报 ›› 2021, Vol. 42 ›› Issue (03): 56-63.doi: 10.13475/j.fzxb.20200602108

所属专题: 高性能纤维制备及应用

• 纤维材料 • 上一篇    下一篇

兔毛基中空碳纤维在锂硫电池中的应用

陈君妍1,2, 鞠敬鸽1,2, 邓南平1,2, 杨琪1,2, 程博闻1,2, 康卫民1,2()   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学 分离膜与膜过程国家重点实验室, 天津 300387
  • 收稿日期:2020-06-08 修回日期:2020-11-16 出版日期:2021-03-15 发布日期:2021-03-17
  • 通讯作者: 康卫民
  • 作者简介:陈君妍(1994—),女,硕士。主要研究方向为生物质纤维材料。
  • 基金资助:
    国家自然科学基金项目(51873152);天津市科技计划项目(19PTSYJC00010)

Application of rabbit hair based hollow carbon fiber in lithium-sulfur battery

CHEN Junyan1,2, JU Jingge1,2, DENG Nanping1,2, YANG Qi1,2, CHENG Bowen1,2, KANG Weimin1,2()   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. State Key Laboratory of Separation Membrane and Membrane Process, Tiangong University, Tianjin 300387, China
  • Received:2020-06-08 Revised:2020-11-16 Online:2021-03-15 Published:2021-03-17
  • Contact: KANG Weimin

摘要:

为开发高性能、低成本的锂硫电池正极储硫材料,利用天然生物质纤维兔毛为前驱体,经预处理和炭化制备了具有杂原子掺杂的兔毛中空碳纤维(RC),并采用热熔融法制得硫/兔毛基碳纤维(S/RC)复合材料。探讨了不同炭化温度对碳纤维形貌结构、S/RC复合材料晶型结构与电导率、锂硫电池的电化学性能及循环充放电稳定性的影响。结果表明:预处理温度为300 ℃,炭化温度为800 ℃时,制备的兔毛基中空碳纤维的形貌结构最好,用其作为正极材料制备的电池首次放电比容量达899 mA·h/g,在0.5C倍率下300次循环后放电比容量为598 mA·h/g,仍保持原始比容量的66.52%;在高倍率条件下该电池仍具有较高的放电比容量,1C和2C倍率下放电比容量分别为543.8和505.4 mA·h/g。

关键词: 兔毛, 中空碳纤维, 锂硫电池, 正极材料, 生物质纤维

Abstract:

In order to develop a high-performance and low-cost lithium-sulfur battery cathode sulfur storage material, the rabbit hair hollow carbon fiber (RC) with heteroatom doping was successfully prepared by using natural biomass fiber as the precursor. After pretreatment and carbonization, the sulfur/rabbit hair carbon fiber (S/RC) composite material is prepared by hot melting method. The effects of different carbonization temperatures on the morphology and structure of carbon fibers, the crystalline structure and conductivity of S/RC composites, the electrochemical performance of lithium-sulfur batteries and the stability of cyclic charge and discharge were discussed. The results show that when the pretreatment temperature is 300 ℃ and the carbonization temperature is 800 ℃, the morphology and structure of the prepared rabbit hair hollow carbon fiber are the most intact; the battery prepared with it has a first discharge specific capacity of 899 mA·h/g, and at 0.5C after 300 cycles, the discharge specific capacity became 598 mA·h/g, retaining 66.52% of the original specific capacity. Under high rate conditions, the battery still has a high discharge specific capacity, and the discharge specific capacities at 1C and 2C are 543.8 and 505.4 mA·h/g respectively.

Key words: rabbit hair, hollow carbon fiber, lithium-sulfur battery, anode material, biomass fiber

中图分类号: 

  • TS139

图1

S/RC复合材料的形成原理图"

图2

不同制备阶段的兔毛扫描电镜照片"

图3

兔毛基中空碳纤维透射电镜照片"

表1

RC-800和S/RC表面元素含量"

样品名称 含量
C N O P S
RC-800 75.72 6.61 7.70 6.34 3.63
S/RC-700 56.36 4.01 4.17 1.37 34.09
S/RC-800 57.75 3.53 3.66 1.14 33.92
S/RC-900 58.35 3.49 2.17 0.82 35.17

图4

不同炭化温度的RC和S/RC的X射线衍射图谱"

图5

S/RC复合材料的热重曲线"

图6

RC-800和S/RC-800氮气吸附-脱附等温曲线及孔径分布图"

图7

正极材料的电化学阻抗图和循环伏安曲线"

图8

S/RC-CNTs复合材料在0.5C时的循环性能"

图9

S/RC-CNTs的初始充放电曲线"

图10

不同倍率下S/RC-CNTs-800的充放电曲线"

图11

不同循环次数S/RC-CNTs-800的充放电曲线"

图12

S/RC-CNTs-800的倍率性能"

[1] 刘北元, 谢朝香, 崔志兴, 等. 氮掺杂多孔碳纤维改性锂硫电池正极材料[J]. 上海航天(中英文), 2020,37(2):69-74.
LIU Beiyuan, XIE Zhaoxiang, CUI Zhixing, et al. Nitrogen doped porous carbon fiber modified lithium sulfur battery anode material[J]. Aerospace Shanghai (Chinese & English), 2020,37(2):69-74.
[2] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015,7(1):19-29.
doi: 10.1038/nchem.2085 pmid: 25515886
[3] 吴凯, 张耀, 曾毓群, 等. 锂离子电池安全性能研究[J]. 化学进展, 2011,23(2/3):402-408.
WU Kai, ZHANG Yao, ZENG Yuqun, et al. Study on safety performance of lithium ion battery[J]. Progress in Chemical, 2011,23(2/3):402-408.
[4] ZHAO H J, DENG N P, KANG W M, et al. The significant effect of octa(aminophenyl)silsesquioxane on the electrospun ion-selective and ultra-strong poly-m-phenyleneisophthalamide separator for enhanced electrochemical performance of lithium-sulfur battery[J]. Chemical Engineering Journal, 2020,381:122715.
[5] JAYAPRAKASH N, SHEN J, MOGANTY S S, et al. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angewandte Chemie-International Edition in English, 2011,123:6026-6030.
[6] WU F, CHEN J, CHEN R, et al. Sulfur/polythiophene with a core/shell structure: synjournal and electrochemical properties of the cathode for rechargeable lithium batteries[J]. The Journal of Physical Chemistry C, 2011,115(13):6057-6063.
[7] ZHANG Y, WANG L, ZHANG A, et al. Novel V2O5/S composite cathode material for the advanced secondary lithium batteries[J]. Solid State Ionics, 2010,181(17/18):835-838.
[8] LIU J, YUAN L, YUAN K, et al. SnO2 as a high-efficiency polysulfide trap in lithium-sulfur batteries[J]. Nanoscale, 2016,8(28):13638-13645.
doi: 10.1039/c6nr02345b pmid: 27364768
[9] YANG Y, ZHENG G, MISRA S, et al. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries[J]. Journal of the American Chemical Society, 2012,134(37):15387-15394.
doi: 10.1021/ja3052206 pmid: 22909273
[10] JOZWIUK A, SOMMER H, JANEK J, et al. Fair performance comparison of different carbon blacks in lithium-sulfur batteries with practical mass loadings-simple design competes with complex cathode architecture[J]. Journal of Power Sources, 2015,296:454-461.
doi: 10.1016/j.jpowsour.2015.07.070
[11] SONG J, XU T, GORDIN M L, et al. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries[J]. Advanced Functional Materials, 2014,24(9):1243-1250.
doi: 10.1002/adfm.201302631
[12] CHEN F, YANG J, BAI T, et al. Biomass waste-derived honeycomb-like nitrogen and oxygen dual-doped porous carbon for high performance lithium-sulfur batteries[J]. Electrochimica Acta, 2016,192:99-109.
doi: 10.1016/j.electacta.2016.01.192
[13] ZHAO J, YANG Y, KATIYAR R S, et al. Phosphorene as a promising anchoring material for lithium-sulfur batteries: a computational study[J]. Journal of Materials Chemistry A, 2016,4(16):6124-6130.
doi: 10.1039/C6TA00871B
[14] ZHOU G, PAEK E, HWANG G S, et al. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge[J]. Nature Communications, 2015(6):7760-8760.
[15] YANG J, CHEN F, LI C, et al. A free-standing sulfur-doped microporous carbon interlayer derived from luffa sponge for high performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2016,4(37):14324-14333.
doi: 10.1039/C6TA06250D
[16] QU J, LV S, PENG X, et al. Nitrogen-doped porous "green carbon" derived from shrimp shell: combined effects of pore sizes and nitrogen doping on the performance of lithium sulfur battery[J]. Journal of Alloys and Compounds, 2016,671:17-23.
[17] WU H L, DENG Y L, MOU J, et al. Activator-induced tuning of micromorphology and electrochemical properties in biomass carbonaceous materials derived from mushroom for lithium-sulfur batteries[J]. Electrochimica Acta, 2017,242:146-158.
[18] WU H, XIA L, REN J, et al. A high-efficiency N/P co-doped graphene/CNT@porous carbon hybrid matrix as a cathode host for high performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2017,5(38):20458-20472.
doi: 10.1039/C7TA06504C
[19] LI F, QIN F, ZHANG K, et al. Hierarchically porous carbon derived from banana peel for lithium sulfur battery with high areal and gravimetric sulfur loading[J]. Journal of Power Sources, 2017,362:160-167.
[20] LI Y Y, WANG L, GAO B, et al. Hierarchical porous carbon materials derived from self-template bamboo leaves for lithium-sulfur batteries[J]. Electrochimica Acta, 2017,229:352-360.
[21] REN J, ZHOU Y B, WU H L, et al. Sulfur-encapsulated in heteroatom-doped hierarchical porous carbon derived from goat hair for high performance lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2018,30:121-131.
[22] SU D S, SCHLOGL R. Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications[J]. Chem Sus Chem, 2010,3(2):136-68.
[23] 鞠敬鸽. 立体蜂窝状多孔碳纳米纤维基锂离子电容器负极材料研究[D]. 天津:天津工业大学, 2019, 36-48.
JU Jingge. Research on anode materials of three-dimensional cellular porous carbon nanofiber wire-based lithium ion capacitor[D]. Tianjin:Tiangong University, 2019: 36-48.
[24] 葛乃维, 张昊, 张毅. 兔毛角蛋白抗菌水凝胶的制备及其抗菌性能研究[J]. 中国养兔, 2019,6:4-11.
GE Naiwei, ZHANG Hao, ZHANG Yi. Preparation of rabbit hair keratin antibacterial hydrogel and study on its antibacterial properties[J]. Chinese Journal of Rabbit Farming, 2019,6:4-11.
[25] 邓南平. 锂硫电池用蜂窝多孔碳纳米纤维正极材料与芳纶隔膜的制备及性能研究[D]. 天津:天津工业大学, 2018, 37-51.
DENG Nanping. Preparation and properties of cellular porous carbon nanofiber membrane for lithium sulfur batteries[D]. Tianjin:Tiangong University, 2018: 37-51.
[26] WU H, MOU J, ZHOU L, et al. Cloud cap-like, hierarchically porous carbon derived from mushroom as an excellent host cathode for high performance lithium-sulfur batteries[J]. Electrochimica Acta, 2016,212:1021-1030.
doi: 10.1016/j.electacta.2016.07.153
[27] XU G, YAN Q B, KUSHIMA A, et al. Conductive graphene oxide-polyacrylic acid (GOPAA) binder for lithium-sulfur battery[J]. Nano Energy, 2017,31:568-574.
[28] ZHANG S S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions[J]. Journal of Power Sources, 2013,231:153-162.
[1] 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18.
[2] 张毅 黎淑婷 张昊 张转玲. 兔毛白粉成分结构分析及其应用[J]. 纺织学报, 2017, 38(12): 20-26.
[3] 王美红 王曙东. 柳皮纤维的结构与性能[J]. 纺织学报, 2016, 37(01): 23-27.
[4] 陈良;彭志勤;丁皓;胡国樑;陈维国. DCCA处理对兔毛纤维性能的影响[J]. 纺织学报, 2010, 31(8): 16-20.
[5] 侯大寅;李良飞;魏取福. 兔毛低温等离子体表面改性[J]. 纺织学报, 2007, 28(10): 15-17.
[6] 刘恩华;李树锋;程博闻;杜启云. 聚丙烯腈基中空碳纤维膜制备及结构研究[J]. 纺织学报, 2006, 27(4): 19-21.
[7] 奚柏君;唐立敏;张才前. 兔毛纤维的酶处理[J]. 纺织学报, 2006, 27(3): 21-23.
[8] 陈国华. 环境湿度对兔毛纤维摩擦性能的影响[J]. 纺织学报, 1999, 20(03): 64-64.
[9] 陈国华. 和毛油水对兔毛的作用探讨[J]. 纺织学报, 1999, 20(02): 32-33.
[10] 林立中. 兔毛的等离子体表面改性研究[J]. 纺织学报, 1999, 20(01): 46-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!