纺织学报 ›› 2019, Vol. 40 ›› Issue (06): 38-43.doi: 10.13475/j.fzxb.20180704006

• 纺织工程 • 上一篇    下一篇

碳纤维织物在热流冲击下的热传递数值模拟

  

  • 收稿日期:2018-07-17 修回日期:2019-03-11 出版日期:2019-06-15 发布日期:2019-06-25

Numerical simulation of heat transfer of carbon fiber fabric under impact of heat flux

  • Received:2018-07-17 Revised:2019-03-11 Online:2019-06-15 Published:2019-06-25

摘要:

为研究纺织材料在热流冲击下的热传递性能,以碳纤维平纹织物为例,利用电子显微镜获得纱线的几何结构参数、经纬纱交织路径及横截面形状,建立碳纤维织物单元结构模型,基于传热学的基本方程,利用有限元法数值求解织物厚度方向上的温度随时间变化曲线。结果表明:利用创建的热流冲击下织物热传递数值模型可预测织物背面温度随时间变化的情况;试验验证发现,利用数值模型计算获得的织物背面温度随时间的变化趋势与试验结果一致,当织物表面分别施加热流密度为1 319 W/ m2 和1 103 W/ m2 时,织物背面温度的模拟值和试验值的平均相对误差分别为6. 64%和3. 28%。说明所建立的数值模型能较好地反映碳纤维平纹织物动态传热过程,可为高温热流冲击下隔热耐烧蚀织物的开发和性能优化提供理论参考。

关键词: 碳纤维织物, 热传递, 三维几何模型, 数值模拟, 热流密度

Abstract:

In order to study the heat transfer performance of textile materials under the impact of convective heat flux, taking the carbon fiber plain weave fabric as an example, the geometric parameters of yarn, the weaving path and cross-section shape of warp and weft yarns were obtained by scanning electron microscopy. Then a 3-D structural model of carbon fiber fabric was established. Based on the basic equation of heat transfer, the temperature variation curve in the direction of fabric thickness was solved numerically by finite element method. The results show that the heat transfer numerical model can be adopted to predict the temperature of the fabric back changing with time. It is found by experiments that the variation trend of fabric back temperature obtained with the numerical model is correlated with the experimental results. When heat flux is 1 319 W/ m2 and 1 103 W/ m2, respectively, the average relative errors of simulated and experimental values of fabric back temperature are 6. 64% and 3. 28%. It is indicated that the numerical model can better reflect the dynamic heat transfer process of carbon fiber fabric, which can provide an effective theoretical reference for the development of heat protective fabrics under high heat flux in the future.

Key words: carbon fiber fabric, heat transfer, 3-D geometric model, numerical simulation, heat, flux density

[1] Zhao Y X, Shi L M, Li Y L. Carbon fiber application analysis in the apparel field[J]. Advanced Materials Research, 2013, 734-737: 2470-2474.
[2] 郭文文, 彭董挹海, 黄小双,等. 碳纤维织物力学性能和冲压成形实验研究[J]. 材料科学与工艺, 2017, 25(3): 41-45.
GUO Wenwen, PENG Dongyihai, HUANG Xiaoshuang, et al. Experimental study on the mechanical properties and stamping forming of a carbon woven fabric[J]. Materials Science & Technology, 2017, 25(3): 41.45.
[3] 吴佳佳, 唐虹. 应用ABAQUS的织物热传递有限元分析 [J]. 纺织学报, 2016, 37(9): 37-41.
WU Jiajia, TANG Hong. ABAQUS based finite element analysis of heat transfer through woven fabrics[J]. Journal of Textile Rearch, 2016, 37(9): 37-41.
[4] Siddiqui M O R, Sun D. Finite element analysis of thermal conductivity and thermal resistance behaviour of woven fabric[J]. Computational Materials Science, 2013, 75(12): 45-51.
[5] Ran X J, Zhu Q Y, Li Y. Investigation on heat and mass transfer in 3D woven fibrous material[J]. International Journal of Heat & Mass Transfer, 2011, 54(15): 3575-3586.
[6] Fang H, Gutowski M, Disogra M, et al. A numerical and experimental study of woven fabric material under ballistic impacts[J]. Advances in Engineering Software, 2016, 96: 14-28.
[7] Cimilli S, Fbu N, Candan C. Modeling of heat transfer measurement unit for cotton plain knitted fabric using a finite element method[J]. Textile Research Journal, 2008, 78(1): 53-59.
[8] Fan J, Wang L L, Cheng Q, et al. Thermal analysis of biomimic woven fabric based on finite element method[J]. Journal of Thermal Analysis & Calorimetry, 2015, 121(2):737-742.
[9] 巩彦如, 张璇, 毛志平,等. 热防护纺织材料隔热性能的数值模拟[J]. 东华大学学报(自然科学版), 2010, 36(2):115-117.
GONG Yanru, ZHANG Xuan, MAO Zhiping, et al. Numerical simulation on thermal protection properties of textile materials[J]. Journal of Donghua University(Natural Science), 2010, 36(2): 115-117.
[10] 朱方龙. 消防服用织物热防护性能数值模拟[J]. 消防 科学与技术, 2011, 30(11):1044-1047.
ZHU Fanglong. Numerical simulation on thermal protection performance of textile used for fire fighting suit[J]. Fire Science and Technology, 2011, 30(11): 1044-1047.
[11] 郑少明. 纱线横截面切片方法的研究[J]. 中国纤检,2013(21):64-65.
ZHENG Shaoming. Study on the sectioning methods of yarn cross-section[J]. Test Science, 2013(21):64-65.
[12] Lin H, Brown L P, Long A C. Modelling and simulating textile structures using TexGen[J]. Advanced Materials Research, 2011, 331:44-47.
[13] 蔡雨, 郑天勇, 景书娟,等. Peirce平纹机织物结构模型的计算精确度[J]. 纺织学报, 2012, 33(1): 48-53.
CAI Yu, ZHENG Tianyong, JING Shujuan, et al. Calculation accuracy of Peirce’s plain woven fabric model for geometric struture of plain woven fabric[J]. Journal of Textile Research, 2012, 33(1): 48-53.
[14] 刘彦丰, 高正阳, 梁秀俊. 传热学[M]. 北京: 中国电力出版社, 2015.
LIU Yanfeng, GAO Zhengyang, LIAO Xiujun. Heat transfer[M]. Beijing: China Power Press, 2015.
[15] Misra R, Bansal V, Agrawal G D, et al. Transient analysis based determination of derating factor for Earth Air Tunnel Heat exchanger in winter[J]. Energy & Buildings, 2013, 58(2): 76-85.
[16] Dixit A, Misra R K, Mali H S. Finite Element Compression Modelling of 2x2 Twill Woven Fabric Textile Composite [J]. Procedia Materials Science, 2014, 6: 1143-1149.
[17] 谢光银. 机织物设计基础学[M]. 上海:东华大学出版社, 2010: 21-23.
XIE Guangyin. Design foundation of woven fabric[M]. Shanghai: Donghua University Press, 2010: 21-23.
[18] 秦强, 任青梅, 王琦,等. 气动压力对柔性热防护结构隔热性能的影响[J]. 宇航材料工艺, 2010, 40(5):81-83.
QIN Qiang, Ren Qingmei, Wang Qi,et al. Analysis of influence of aerodynamic pressure on properties of flexible thermal protection structure insulation[J]. Aerospace Materials & Technology, 2010, 40(5): 81-83.
[1] 郭臻 李新荣 卜兆宁 袁龙超. 喷气涡流纺中纤维运动的三维数值模拟 [J]. 纺织学报, 2019, 40(05): 131-135.
[2] 曹海建 陈红霞 黄晓梅. 玻璃纤维/ 环氧树脂基夹芯材料侧压性能数值模拟 [J]. 纺织学报, 2019, 40(05): 59-63.
[3] 广少博 金玉珍 祝晓晨. 喷气织机延伸喷嘴内气流场特性分析[J]. 纺织学报, 2019, 40(04): 135-139.
[4] 刘倩楠 张涵 刘新金 苏旭中. 基于ABAQUS 的三原组织机织物拉伸力学性能模拟[J]. 纺织学报, 2019, 40(04): 44-50.
[5] 尚珊珊 郁崇文 杨建平 钱希茜. 喷气涡流纺纺纱过程中的气流场数值模拟[J]. 纺织学报, 2019, 40(03): 160-167.
[6] 史倩倩 高备 林惠婷 张玉泽 汪军. 传统型与双喂给转杯纺纺纱器及其成纱性能对比[J]. 纺织学报, 2019, 40(02): 63-68.
[7] 陈悦 赵永欢 褚朱丹 庄志山 邱琳琳 杜平凡. 基于碳纤维及织物的柔性锂电池电极研究进展[J]. 纺织学报, 2019, 40(02): 173-180.
[8] 闫琳琳 邹专勇 卫国 程隆棣. 基于螺旋导引槽空心锭子的喷气涡流纺加捻腔流场模拟[J]. 纺织学报, 2018, 39(09): 139-145.
[9] 胥光申 孔双祥 刘洋 罗时杰. 基于Fluent的喷气织机辅助喷嘴综合性能[J]. 纺织学报, 2018, 39(08): 124-129.
[10] 张文欢 钱晓明 师云龙 范金土 牛丽. 服装局部热阻与总热阻的动静态关系及其模型[J]. 纺织学报, 2018, 39(07): 111-115.
[11] 杨瑞华 刘超 薛元 高卫东. 转杯复合纺成纱器内流场模拟及纱线质量分析[J]. 纺织学报, 2018, 39(03): 26-30.
[12] 林惠婷 汪军. 纤维在输纤通道气流场中运动的模拟[J]. 纺织学报, 2018, 39(02): 55-61.
[13] 卢琳珍 徐定华 徐映红. 应用三层热防护服热传递改进模型的皮肤烧伤度预测[J]. 纺织学报, 2018, 39(01): 111-118.
[14] 陈洪立 李炯 金玉珍 武传宇 胡旭东. 空心锭结构参数对喷气涡流纺内流场的影响[J]. 纺织学报, 2017, 38(12): 135-140.
[15] 张东 孟婥. 纱筒残余氨的扩散过程建模与数值模拟[J]. 纺织学报, 2017, 38(09): 149-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!