纺织学报 ›› 2019, Vol. 40 ›› Issue (04): 44-50.doi: 10.13475/j.fzxb.20180405107

• 纺织工程 • 上一篇    下一篇

基于ABAQUS 的三原组织机织物拉伸力学性能模拟

  


  • 收稿日期:2018-04-20 修回日期:2018-11-06 出版日期:2019-04-15 发布日期:2019-04-16

Simulation on tensile mechanical properties of three-elementary weave woven fabrics based on ABAQUS

  • Received:2018-04-20 Revised:2018-11-06 Online:2019-04-15 Published:2019-04-16

摘要:

为更好地了解平纹、斜纹和经面缎纹3 种基本组织纯棉机织物抵抗外力拉伸变形的能力,在实际测量织物结构参数的基础上,提出一种评价和预测机织物拉伸性能的方法;借助专业纺织建模软件Texgen 建立织物三维细观模型;利用有限元软件ABAQUS,依据织物拉伸环境设置材料属性、相互作用和边界条件等计算模型数值解;通过织物拉伸强力测试实验验证数值模拟结果的有效性。结果表明:平纹织物、斜纹织物和经面缎纹织物拉伸应力、应变模拟结果与实验测试结果差异率均在6%以内;在原料、经纬纱密度和捻度、织物经纬密都相同的条件下,平纹织物抵抗外力变形的能力更强。

关键词: 三原组织, 机织物, 几何模型, 拉伸强力, 有限元法, 数值模拟

Abstract:

In order to better understand the resisting external tensile deformation capability of the plain weave, twill and warp satin three-elementary cotton woven fabrics, a method for evaluating and predicting the tensile properties of woven fabrics was proposed. On the basis of the measured fabric structure parameters, a three-dimensional textile microscopic model was established by a professional textile modeling software Texgen. The numerical solution of the model was calculated using finite element software ABAQUS, setting material properties, interaction and boundary conditions according to the fabric stretching environment. The effectiveness of the numerical simulation was verified by the tensile test of fabric. The results show that the difference between simulation results and experimental test results on tensile stress and strain of plain weave fabric, twill fabric and warp satin fabric is within 6%. Plain weave has stronger resistance to external deformation under the same conditions of raw material, warp and weft yarn density, twist and warp and weft density.

Key words: three-elementary weave, woven fabric, geometric model, tensile strength, finite element method, numerical simulation

[1] Shen Yang, Meir A J, Cao Yanzhao, et al. Finite element analysis of monofilament woven fabrics under uniaxial tension[J]. Journal of the textile institute, 2015, 106(1): 90-100.
[2] Dixit A, Misra RK, Mali HS. Compression modeling of plain weave textile fabric using finite elements[J]. Materialwissenschaft Und Werkstofftechnik, 2014, 45(7): 600-610.
[3] 李瑛慧,谢春萍,刘新金.三原组织织物拉伸力学性能有限元仿真[J].纺织学报, 2017, 38(11): 41-47.
LI Yinghui, XIE Chunping, LIU Xinjin. Finite element simulation on tensile mechanical properties of three-elementary weave fabric[J]. Journal of Textile Research, 2017, 38(11): 41-47.
[4] 陈振,管江明,邢明杰.基于TexGen的织物仿真建模及其应用方向[J].棉纺织技术, 2016, 44(11): 81-84.
CHEN Zhen, GUAN Jiangming, XING Mingjie. Fabric simulation modeling based on TexGen and Its application direction[J]. Cotton Textile Technology, 2016, 44(11): 81-84.
[5] Martin S. Geometric and mechanical modelling of textiles [D]. University of Nottingham, 2007: 22-35.
[6] 吴佳佳,唐虹.应用ABAQUS的织物热传递有限元分析[J].纺织学报, 2016,37(9):37–41.
WU Jiajia, TANG Hong. ABAQUS based finite element analysis of heat transfer through woven fabrics[J]. Journal of Textile Research, 2016, 37(9): 37-41.
[7] 靳欢欢.机织物三点梁弯曲性能有限元模拟与分析[D].上海:东华大学, 2016: 13-18.
JIN Huanhuan. Simulation and analysis of three-point bending property of woven fabrics by finite element method[D]. Shanghai: Donghua University, 2016: 13-18.
[8] 马倩.机织物撕裂破坏机理的有限元分析[D].上海:东华大学, 2011: 19-23.
MA Qian. Finite element analysis of woven fabrics tearing damage[D]. Shanghai: Donghua University, 2011: 19–23.
[9] Abghary MJ, Nedoushan RJ, Hasani H. Multi-Scale Modeling the mechanical properties of biaxial weft knitted fabrics for composite applications[J]. Applied Composite Materials. 2017, 24(4): 863-878.
[10] 曹荣平.机织建筑膜材料拉伸力学性能的有限元模拟与分析[D].上海:东华大学, 2013: 1-2.
CAO Rongping. Simulation and analysis of tensile property of woven architectural membrane material by finite element method[D]. Shanghai: Donghua University, 2013: 1-2.
[1] 广少博 金玉珍 祝晓晨. 喷气织机延伸喷嘴内气流场特性分析[J]. 纺织学报, 2019, 40(04): 135-139.
[2] 尚珊珊 郁崇文 杨建平 钱希茜. 喷气涡流纺纺纱过程中的气流场数值模拟[J]. 纺织学报, 2019, 40(03): 160-167.
[3] 史倩倩 高备 林惠婷 张玉泽 汪军. 传统型与双喂给转杯纺纺纱器及其成纱性能对比[J]. 纺织学报, 2019, 40(02): 63-68.
[4] 唐文君 彭明华 向中林 邵冬燕 倪佳东 许长海. 应用阳离子漂白活化剂的棉织物快速轧蒸漂白工艺[J]. 纺织学报, 2019, 40(02): 125-129.
[5] 刘赛 郑冬明 潘行星 刘贵 杜赵群. 交叉螺旋结构拉胀纱线及其织物的成形与表征[J]. 纺织学报, 2019, 40(02): 26-29.
[6] 王旭 储长流 倪庆清 刘新华. 运用MAXScript语言的单层机织物结构三维建模[J]. 纺织学报, 2019, 40(01): 159-165.
[7] KHAN Monir MUHAMMAD Ali 方小银 周熠. 纱罗组织对芳纶织物交织阻力的影响 [J]. 纺织学报, 2018, 39(11): 38-44.
[8] 汪泽幸 刘超 何斌 周锦涛 李洪登. 聚氯乙烯涂层膜材料非线性蠕变性能预测[J]. 纺织学报, 2018, 39(10): 68-73.
[9] 汝欣 彭来湖 吕明来 史伟民 胡旭东. 纬编针织物几何建模及其算法[J]. 纺织学报, 2018, 39(09): 44-49.
[10] 刘倩楠 刘新金. 采用ABAQUS的粘胶机织物拉伸力学性能仿真[J]. 纺织学报, 2018, 39(09): 39-43.
[11] 闫琳琳 邹专勇 卫国 程隆棣. 基于螺旋导引槽空心锭子的喷气涡流纺加捻腔流场模拟[J]. 纺织学报, 2018, 39(09): 139-145.
[12] 胥光申 孔双祥 刘洋 罗时杰. 基于Fluent的喷气织机辅助喷嘴综合性能[J]. 纺织学报, 2018, 39(08): 124-129.
[13] 敖利民 唐雯. 基于综框任意升降的随机织物设计方法[J]. 纺织学报, 2018, 39(08): 33-40.
[14] 王双 刘玮 刘晓霞 许福军 程琼 王晶. 嵌入机织物的碳纳米管纱线应变传感性能[J]. 纺织学报, 2018, 39(05): 43-48.
[15] 杨瑞华 刘超 薛元 高卫东. 转杯复合纺成纱器内流场模拟及纱线质量分析[J]. 纺织学报, 2018, 39(03): 26-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 朱启英;黄淑珍. 国毛与澳毛啥味呢产品风格的探讨[J]. 纺织学报, 1984, 5(07): 56 -58 .
[2] 张圣瑞;何广德. 梳棉除尘设计中有关吸风形式的探讨[J]. 纺织学报, 1984, 5(08): 30 -34 .
[3] 谭俊孝. 影响粗纱伸长率差异的因素分析[J]. 纺织学报, 1986, 7(04): 33 -35 .
[4] 夏永诚. STEI06型空气变形系列喷嘴通过技术鉴定[J]. 纺织学报, 1986, 7(04): 14 .
[5] 吴文兰. 医疗卫生保健纺织品展望[J]. 纺织学报, 1990, 11(03): 46 -48 .
[6] 冯新星;陈建勇;陈子毫;郭玉海;张建春;. 天然染料紫草染色织物的迷彩伪装防护性能[J]. 纺织学报, 2005, 26(5): 72 -73 .
[7] 王晓红;杨锁廷;姚金波;刘建中;张淑洁. 拉伸细化羊毛纤维的性能研究[J]. 纺织学报, 2005, 26(1): 39 -41 .
[8] 王德骥;孙玉英;刘奕庄;罗和柏. 对苎麻脱胶质量检验指标——残胶率及半纤维素的分析研究[J]. 纺织学报, 1984, 5(09): 19 -23 .
[9] 朱良均. 家蚕茧解舒优劣的检测研究[J]. 纺织学报, 2000, 21(05): 42 -44 .
[10] 曹亚春;柳德康;徐福华;戴琦兴;许逊;陈如荣. 一种改进的试样复摇车[J]. 纺织学报, 1986, 7(05): 45 -46 .