纺织学报 ›› 2019, Vol. 40 ›› Issue (11): 161-167.doi: 10.13475/j.fzxb.20181103007

• 管理与信息化 • 上一篇    下一篇

喷气织机辅助喷嘴结构参数对流场特性的影响

李斯湖, 沈敏(), 白聪, 陈亮   

  1. 武汉纺织大学 数字化纺织装备湖北省重点实验室, 湖北 武汉 430200
  • 收稿日期:2018-11-12 修回日期:2019-05-08 出版日期:2019-11-15 发布日期:2019-11-26
  • 通讯作者: 沈敏
  • 作者简介:李斯湖(1994—),男,硕士生。主要研究方向为喷气织机流场特性。
  • 基金资助:
    国家自然科学基金项目(51505344);湖北省自然科学基金项目(2014CFB766);湖北省数字化纺织装备重点实验室开放课题项目(DTL2018017)

Influence of structure parameter of auxiliary nozzle in air-jet loom on characteristics of flow field

LI Sihu, SHEN Min(), BAI Cong, CHEN Liang   

  1. Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2018-11-12 Revised:2019-05-08 Online:2019-11-15 Published:2019-11-26
  • Contact: SHEN Min

摘要:

为降低辅助喷嘴能耗,增强辅喷气流的集束性,提高生产效率和织物质量,分析了辅助喷嘴结构参数和供气压力对射流特性的影响。运用流体动力学软件Fluent对不同供气压力下单圆孔、正三角形孔和星形孔3种典型辅助喷嘴结构的三维流场模型进行数值模拟,得到在0.2~0.4 MPa供气压力下3种辅助喷嘴对称面的速度云图、中心轴线速度、耗气量及引纬速度平稳性,提出了评定辅助喷嘴综合性能的方法。并将单圆孔辅助喷嘴数值计算得到的中心线速度和径向速度与实验值进行了比较,验证了数值仿真结果的正确性。结果表明,当供气压力相同时,星形孔辅助喷嘴气流集束性、引纬平稳性最好,耗气量小,综合性能最优。

关键词: 喷气织机, 辅助喷嘴, 异形筘, 数值模拟, 星形喷嘴

Abstract:

In order to reduce the energy consumption of the auxiliary nozzle, enhance the bundling of the air jet and improve the production efficiency and fabric quality, the influences of structural parameters of the auxiliary nozzle and the supply pressure on the characteristics of flow field were studied. The numerical simulation of three-dimensional flow field model were carried by fluid dynamics software Fluent. Three typical auxiliary nozzle structures under different gas supply pressures were investigated, such as the single circular hole, regular triangular hole and star hole. The velocity contours of the symmetry planes, the central axis speed, the air consumption and the weft insertion stability were acquired under the air supply pressure of 0.2 MPa to 0.4 MPa. The numerical results of the central line velocity and the radial velocity of the single circular hole were verified by experiment. Comparisons between these two results indicate that the overall trend of speed change is consistent with the experimental results. On this basis, the influence of different orifice type auxiliary nozzles on the flow field was explored. The results showed that when the air supply pressure is same, the star-hole auxiliary nozzle has better airflow bundling, better weft insertion stability and less air consumption.

Key words: air jet loom, auxiliary nozzle, profiled reed, numerical simulation, star hole

中图分类号: 

  • TS103.3

图1

单圆孔辅助喷嘴图"

图2

正三角形孔辅助喷嘴图"

图3

星形孔辅助喷嘴图"

图4

辅助喷嘴网格模型和边界条件"

表1

不同供气压力下的压力入口条件"

压力P/
MPa
总压P1/
MPa
静压P2/
Pa
湍动能κ/
(m2·s-2)
湍动能耗散率
ε/(m2·s-2)
0.2 0.2 198 366 5.7 9 942.8
0.3 0.3 297 554 5.1 8 480.5
0.4 0.4 396 703 4.8 7 724.4

表2

截面数值模拟与实验值等效圆直径对比"

速度/(m·s-1) 等效圆直径/mm
数值模拟 文献[4]实验值
100 3.1 3.5
80 4.6 4.5
60 6.5 6.7
40 8.5 9.5
20 10.0 12.5

图5

不同供气压力单圆孔辅助喷嘴中心线速度仿真值与实验值比较"

图6

0.3 MPa条件下3种辅助喷嘴模型速度分布云图"

图7

0.4 MPa条件下3种辅助喷嘴模型速度分布云图"

图8

不同压力条件下3种辅助喷嘴中心轴线气流速度曲线图"

图9

0.3 MPa压力条件下不同辅助喷嘴孔径中心线速度曲线图"

表3

0.4 MPa条件下不同孔形辅助喷嘴出口风速和耗气量"

孔形 最大速度/(m·s-1) 耗气量/(m3·h-1)
单圆孔 432 1.357
正三角形孔 457 1.380
星形孔 497 1.215

图10

截面速度分布"

表4

不同压力条件下不同孔形的引纬平稳性"

孔形 不同压力下等效圆半径
0.3 MPa 0.4 MPa
单圆孔 1.45 1.82
正三角形孔 1.54 1.96
星形孔 1.92 2.12
[1] 徐浩贻. 喷气织机能耗及降低辅助喷嘴气耗的探讨[J]. 纺织学报, 2010,31(5):126-130.
XU Haoyi. Research on energy-consumption of air-jet loom and decrease in air-consumption of relay nozzle[J]. Journal of Textile Research, 2010,31(5):126-130.
[2] 刘承文, 金玉珍, 胡旭东, 等. 喷气织机辅喷嘴气流场数值模拟及特性分析[J]. 现代纺织技术, 2011,19(4):1-5.
LIU Chengwen, JIN Yuzhen, HU Xudong, et al. Numerical simulation and analysis on gas flow field of the auxiliary nozzle in air-jet looms[J]. Advanced Textile Technology, 2011,19(4):1-5.
[3] MEULEMEESTER S D, PUISSANT P, LANGENHOVE L V. 3D Simulation of the dynamic yarn behavior on air-jet looms[J]. Textile Research Journal, 2009,79(18):1705-1714.
[4] BELFORTE G, MATTIAZZO G, TESTORE F, et al. Experimental investigation on air-jet loom sub-nozzles for weft yarn insertion[J]. Textile Research Journal, 2010,81(8):791-797.
[5] KHIANI R K, PEERZADA M H, ABBASI S A, Air consumption analysis of air-jet weaving[J]. Mehran University Research Journal of Engineering & Technology, 2016,35(3):453-458.
[6] 陈革, 吴重敏, 沈军, 等. 基于Fluent的辅助喷嘴气流流场数值模拟[J]. 纺织学报, 2010,31(8):122-124,129.
CHEN Ge, WU Chongmin, SHEN Jun, et al. Numerical simulation of flow field of auxiliary nozzle as affected by orifice forms of air-jet loom based on Fluent[J]. Journal of Textile Research, 2010,31(8):122-124,129.
[7] 汪旺. 喷气织机辅助喷嘴及合成气流场的数值仿真[D]. 杭州:浙江理工大学, 2012:3-26.
WANG Wang. Numerical simulation of auxiliary nozzle and synthetic airflow field of air-jet loom [D]. Hangzhou: Zhejiang Sci-Tech University, 2012:3-26.
[8] 谭保辉, 冯志华, 刘丁丁, 等. 基于CFD的喷气织机辅助喷嘴流场分析[J]. 纺织学报, 2012,33(7):125-130.
TAN Baohui, FENG Zhihua, LIU Dingding, et al. Flow flied anslysis of auxiliary nozzle of air-jet loom based on CFD[J]. Journal of Textile Research, 2012,33(7):125-130.
[9] 王卫华, 冯志华, 谭保辉, 等. 喷气织机辅助喷嘴引纬特性分析及纬纱牵引实验研究[J]. 纺织学报, 2014,35(10):121-128.
WANG Weihua, FENG Zhihua, TAN Baohui, et al. Characteristic analysis of flow field and experimental investigation on traction force of weft yarns of auxiliary nozzle in air-jet loom[J]. Journal of Textile Research, 2014,35(10):121-128.
[10] 张亮, 冯志华, 刘帅, 等. 喷气织机辅助喷嘴喷孔结构优化设计[J]. 纺织学报, 2016,37(6):112-117,123.
ZHANG Liang, FENG Zhihua, LIU Shuai, et al. Structure optimization design of auxiliary nozzle for air-jet loom[J]. Journal of Textile Research, 2016,37(6):112-117,123.
[11] 陈巧兰, 王鸿博, 高卫东, 等. 喷气织机单圆孔辅助喷嘴结构优化[J]. 纺织学报, 2016,37(1):142-146.
CHEN Qiaolan, WANG Hongbo, GAO Weidong, et al. Structure optimization of single circular hole auxiliary nozzle in air-jet loom[J]. Journal of Textile Research, 2016,37(1):142-146.
[12] 孔双祥, 胥光申, 巨孔亮. 基于Fluent喷气织机不同单孔辅助喷嘴的结构优化[J]. 西安工程大学学报, 2017,31(1):82-87.
KONG Shuangxiang, XU Guangshen, JU Kongliang. Structure optimization of different single hole auxiliary nozzle in air-jet loom based on Fluent[J]. Journal of Xi'an Polytechnic University, 2017,31(1):82-87.
[13] 胥光申, 孔双祥, 刘洋, 等. 基于Fluent的喷气织机辅助喷嘴综合性能[J]. 纺织学报, 2018,39(8):124-129.
XU Guangshen, KONG Shuangxiang, LIU Yang, et al. Comprehensive performance of auxiliary nozzle in air-jet loom based on Fluent[J]. Journal of Textile Research, 2018,39(8):124-129.
[14] ADANUR S, MOHAMED M H. Weft insertion on air- jet looms: velocity measurement and influence of yarn structure: part I: experimental system and computer interface[J]. Journal of The Textile Institute, 1988,79(2):297-315.
[15] ADANUR S, MOHAMED M H. Analysis of yarn motion in single-nozzle air-jet filling insertion: part II: experimental validation of the theoretical models and statistical analysis[J]. Journal of The Textile Institute, 1992,83(1):56-68.
[1] 初曦, 邱华. 不同压强条件下环锭旋流喷嘴内部流场模拟[J]. 纺织学报, 2020, 41(09): 33-38.
[2] 丁宁, 林洁. 非稳态自然对流换热系数计算方法及其在防护服隔热预报中的运用 [J]. 纺织学报, 2020, 41(01): 139-144.
[3] 陈旭 吴炳洋 范滢 杨木生. 蓄热调温织物低温防护过程的数值模拟[J]. 纺织学报, 2019, 40(07): 163-168.
[4] 郑振荣 智伟 韩晨晨 赵晓明 裴晓园. 碳纤维织物在热流冲击下的热传递数值模拟[J]. 纺织学报, 2019, 40(06): 38-43.
[5] 曹海建 陈红霞 黄晓梅. 玻璃纤维/ 环氧树脂基夹芯材料侧压性能数值模拟 [J]. 纺织学报, 2019, 40(05): 59-63.
[6] 郭臻 李新荣 卜兆宁 袁龙超. 喷气涡流纺中纤维运动的三维数值模拟 [J]. 纺织学报, 2019, 40(05): 131-135.
[7] 广少博 金玉珍 祝晓晨. 喷气织机延伸喷嘴内气流场特性分析[J]. 纺织学报, 2019, 40(04): 135-139.
[8] 刘倩楠 张涵 刘新金 苏旭中. 基于ABAQUS 的三原组织机织物拉伸力学性能模拟[J]. 纺织学报, 2019, 40(04): 44-50.
[9] 尚珊珊 郁崇文 杨建平 钱希茜. 喷气涡流纺纺纱过程中的气流场数值模拟[J]. 纺织学报, 2019, 40(03): 160-167.
[10] 史倩倩 高备 林惠婷 张玉泽 汪军. 传统型与双喂给转杯纺纺纱器及其成纱性能对比[J]. 纺织学报, 2019, 40(02): 63-68.
[11] 闫琳琳 邹专勇 卫国 程隆棣. 基于螺旋导引槽空心锭子的喷气涡流纺加捻腔流场模拟[J]. 纺织学报, 2018, 39(09): 139-145.
[12] 胥光申 孔双祥 刘洋 罗时杰. 基于Fluent的喷气织机辅助喷嘴综合性能[J]. 纺织学报, 2018, 39(08): 124-129.
[13] 颜苏芊 王力平. 喷气织机中压缩空气的泄漏评估及其修复优化[J]. 纺织学报, 2018, 39(04): 130-136.
[14] 杨瑞华 刘超 薛元 高卫东. 转杯复合纺成纱器内流场模拟及纱线质量分析[J]. 纺织学报, 2018, 39(03): 26-30.
[15] 林惠婷 汪军. 纤维在输纤通道气流场中运动的模拟[J]. 纺织学报, 2018, 39(02): 55-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!