纺织学报 ›› 2020, Vol. 41 ›› Issue (01): 139-144.doi: 10.13475/j.fzxb.20181105406

• 服装工程 • 上一篇    下一篇

非稳态自然对流换热系数计算方法及其在防护服隔热预报中的运用

丁宁1, 林洁2()   

  1. 1.中国民航大学 航空工程学院, 天津 300300
    2.中国民航大学 中欧航空工程师学院, 天津 300300
  • 收稿日期:2018-11-20 修回日期:2019-09-25 出版日期:2020-01-15 发布日期:2020-01-14
  • 通讯作者: 林洁
  • 作者简介:丁宁(1982—),男,副教授,博士。主要从事机械及流体研究。
  • 基金资助:
    中国民航大学科研启动基金项目(2016QD07X)

Free convection calculation method for performance prediction of thermal protective clothing in an unsteady thermal state

DING Ning1, LIN Jie2()   

  1. 1. College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
    2. Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China
  • Received:2018-11-20 Revised:2019-09-25 Online:2020-01-15 Published:2020-01-14
  • Contact: LIN Jie

摘要:

为得到相对精确的热防护服非稳态隔热性能预测数值,基于传热系统的非稳态传热模型,在防护服材料外表面分别为恒温边界条件和Howard模型对流边界条件下,利用有限差分法分别计算了2种边界条件下模拟皮肤处温度的时程曲线,所得结果均与实验测量值差别较大。在细致分析传热过程的基础上,综合运用傅里叶定律、牛顿冷却定律、以及Howard模型对流边界条件,在线化假设下提出了一种自然对流换热系数计算方法,代入非稳态模型后利用有限差分法进行了求解,随着时间步长的加密,计算结果迅速向实验测量值收敛,当时间步长为0.001 s时,计算结果与测量结果误差小于0.1 ℃。

关键词: 热防护服, 隔热性能, 热传递, 自然对流, 数值模拟

Abstract:

A method for the surface heat transfer coefficient calculation of free convection is proposed, which plays an important part in the numerical heat insulation prediction of thermal protective clothing under unsteady thermal state in high temperature environments, where heat transferred by free convection cannot be ignored or even is the main part. A typical heat transfer model was presented under an unsteady thermal state, using finite difference method. Two sets of numerical results were obtained under two boundary conditions at the outer surface of clothing, these conditions being constant temperature boundary condition and Howard model's free convection boundary condition. However, the comparison between experimental and the two numerical analysis results showed obvious differences. For improvement, a method using Fourier's law, Newton cooling law and free convection condition of Howard model was proposed under linear assumption to calculate free convection heat transfer coefficient. Improving the heat transfer model with this method, three sets of numerical results were obtained using finite difference method with different time steps, and the comparison between experimental and these three numerical results showed fast convergence to experimental results with time step getting smaller. The difference between the calculated and experimental results was less than 0.1 ℃ when time step was set to 0.001 s.

Key words: thermal protective clothing, thermal insulation, heat transfer, free convection, numerical simulation

中图分类号: 

  • O242.1

图1

传热系统组成"

表1

材料的物理属性"

材料
编号
密度/
(kg·m-3)
比热/
(J·(kg·℃)-1)
热传导率/
(W·(m·℃)-1)
厚度/
mm
材料1 300 1 377 0.082 0.6
材料2 862 2 100 0.370 6.0
材料3 74.2 1 726 0.045 3.6
材料4 1.18 1 005 0.028 5.0

图2

不同边界条件和本文方法的不同时间步长计算结果"

图3

Δt=0.001 s的计算误差"

图4

Δt=0.001 s时皮肤表面热流密度随时间的变化"

[1] 田苗, 李俊. 数值模拟在热防护服装性能测评中的应用[J]. 纺织学报, 2015,36(1):158-164.
TIAN Miao, LI Jun. Application of numerical simulation on performance evaluation of thermal protective clothing[J]. Journal of Textile Research, 2015,36(1):158-164.
[2] TORVI D A. Heat transfer in thin fibrous materials under high heat flux conditions[D]. Edmonton: University of Alberta, 1997:47-48.
[3] 卢琳珍, 徐定华, 徐映红. 应用三层热防护服热传递改进模型的皮肤烧伤度预测[J]. 纺织学报, 2018(1):111-118.
LU Linzhen, XU Dinghua, XU Yinghong. Prediction of skin injury degree based on modified model of heat transfer in three-layered thermal protective clothing[J]. Journal of Textile Research, 2018,39(1):111-118.
[4] CHITRPHIROMSRI P, KUZNETSOV A V. Modeling heat and moisture transport in firefighter protective clothing during flash fire exposure[J]. Heat & Mass Transfer, 2005,41(3):206-215.
[5] TORVI D A, DALE J D. Heat transfer in thin fibrous materials under high heat flux[J]. Fire Technology, 1999,35(3):210-231.
doi: 10.1023/A:1015484426361
[6] MELL W E, LAWSON J R. A heat transfer model for firefighters' protective clothing[J]. Fire Technology, 2000,36(1):39-68.
doi: 10.1023/A:1015429820426
[7] KIM M C, YOON D Y, CHOI C K. Buoyancy-driven convection in a horizontal fluid layer under uniform volumetric heat sources[J]. Korean Journal of Chemical Engineering, 1996,13(2):165-171.
doi: 10.1007/BF02705904
[8] SU Yun, LI Rui, SONG Guowen, et al. Modeling steam heat transfer in thermal protective clothing under hot steam exposure[J]. International Journal of Heat & Mass Transfer, 2018,120:818-829.
[9] 陈扬, 杨允出, 刘莹. 非稳态条件下织物热传递模拟分析[J]. 毛纺科技, 2018,46(8):6-10.
CHEN Yang, YANG Yunchu, LIU Ying. Simulation analysis of heat transfer of fabrics in unsteady-state conditions[J]. Wool Textile Journal, 2018,46(8):6-10.
[10] PIOTR Furmański, PIOTR Łapka. Evaluation of a human skin surface temperature for the protective clothing-skin system based on the protective clothing-skin imitating material results[J]. International Journal of Heat & Mass Transfer, 2017,114:1331-1340.
[11] 张昭华, 王云仪, 李俊. 衣下空气层厚度对着装人体热传递的影响[J]. 纺织学报, 2010,31(12):103-107.
ZHANG Zhaohua, WANG Yunyi, LI Jun. Effect of thickness of air layer under clothing on heat transmission of wearer[J]. Journal of Textile Research, 2010,31(12):103-107.
[12] MIN K, SON Y, KIM C, et al. Heat and moisture transfer from skin to environment through fabrics: a mathematical model[J]. International Journal of Heat & Mass Transfer, 2007,50(25):5292-5304.
[13] 中国工业与应用数学学会. 高温作业专用服装设计[EB/OL]. [2018-9-13]. [EB/OL]. [2018-9-13]. .
[1] 史倩倩, 王姜, 张玉泽, 林惠婷, 汪军. 转杯纺纱器气流场形成机制的数值分析[J]. 纺织学报, 2021, 42(02): 180-184.
[2] 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121.
[3] 翟丽娜, 李俊, 杨允出. 热防护服装测评用传感器的发展及其研究现状[J]. 纺织学报, 2020, 41(10): 188-196.
[4] 初曦, 邱华. 不同压强条件下环锭旋流喷嘴内部流场模拟[J]. 纺织学报, 2020, 41(09): 33-38.
[5] 何佳臻, 薛萧昱, 王敏, 李俊. 基于最大衰减因子模型的服装热防护性能预测[J]. 纺织学报, 2020, 41(06): 112-117.
[6] 李斯湖, 沈敏, 白聪, 陈亮. 喷气织机辅助喷嘴结构参数对流场特性的影响[J]. 纺织学报, 2019, 40(11): 161-167.
[7] 陈思, 卢业虎. 空气层厚度对热防护面料蒸汽防护性能的影响[J]. 纺织学报, 2019, 40(10): 141-146.
[8] 张泓月, 李小辉. 热防护服用织物蜂窝夹芯结构的辐射热性能测评[J]. 纺织学报, 2019, 40(10): 147-151.
[9] 陈旭, 吴炳洋, 范滢, 杨木生. 蓄热调温织物低温防护过程的数值模拟[J]. 纺织学报, 2019, 40(07): 163-168.
[10] 郑振荣, 智伟, 韩晨晨, 赵晓明, 裴晓园. 碳纤维织物在热流冲击下的热传递数值模拟[J]. 纺织学报, 2019, 40(06): 38-43.
[11] 曹海建, 陈红霞, 黄晓梅. 玻璃纤维/环氧树脂基夹芯材料侧压性能数值模拟[J]. 纺织学报, 2019, 40(05): 59-63.
[12] 郭臻, 李新荣, 卜兆宁, 袁龙超. 喷气涡流纺中纤维运动的三维数值模拟[J]. 纺织学报, 2019, 40(05): 131-135.
[13] 广少博, 金玉珍, 祝晓晨. 喷气织机延伸喷嘴内气流场特性分析[J]. 纺织学报, 2019, 40(04): 135-139.
[14] 刘倩楠, 张涵, 刘新金, 苏旭中. 基于ABAQUS的三原组织机织物拉伸力学性能模拟[J]. 纺织学报, 2019, 40(04): 44-50.
[15] 尚珊珊, 郁崇文, 杨建平, 钱希茜. 喷气涡流纺纺纱过程中的气流场数值模拟[J]. 纺织学报, 2019, 40(03): 160-167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!