纺织学报 ›› 2019, Vol. 40 ›› Issue (8): 48-54.doi: 10.13475/j.fzxb.20180606907

• 纺织工程 • 上一篇    下一篇

不同芯材高度三维夹芯复合材料抗低速冲击响应的数值模拟

罗超, 曹海建(), 黄晓梅   

  1. 南通大学 纺织服装学院, 江苏 南通 226019
  • 收稿日期:2018-06-25 修回日期:2019-04-11 出版日期:2019-08-15 发布日期:2019-08-16
  • 通讯作者: 曹海建
  • 作者简介:罗超(1994—),男,硕士生。主要研究方向为复合材料性能。
  • 基金资助:
    江苏省高校自然科学研究项目(16KJA430009);江苏省高校自然科学研究项目(16KJB540001);江苏省“六大人才高峰”高层次人才项目(XCL-061);南通大学引进人才科研启动费项目(15R08);南通大学研究生科研创新计划项目(FZ201711)

Numerical simulation on low velocity impact response of three-dimensional sandwich composites with different core height

LUO Chao, CAO Haijian(), HUANG Xiaomei   

  1. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
  • Received:2018-06-25 Revised:2019-04-11 Online:2019-08-15 Published:2019-08-16
  • Contact: CAO Haijian

摘要:

为研究三维夹芯复合材料低速冲击力学响应及损伤机制,借助ANSYS有限元软件,建立不同芯材高度的三维夹芯复合材料细观结构模型进行低速冲击响应模拟,并将模拟值与实验值进行对比分析。结果表明:从宏观角度分析,三维夹芯复合材料抗低速冲击性能随着芯材高度的增加而增加,在上面板均已损坏的情况下,芯材高度为5 mm的材料芯材破坏情况更严重,模拟结果与实验结果具有较好的一致性;从细观角度分析,材料中的经纱、纬纱、接结经纱是承载的主体,树脂基体起次要作用;在5 J能量冲击作用下,材料的破坏模式主要是树脂形变、碎裂,纤维与树脂脱黏。

关键词: 三维夹芯复合材料, 低速冲击, 芯材高度, 有限元法

Abstract:

In order to study the mechanical response and damage mechanism of the three-dimensional sandwich composites at low velocity, a microstructural model of three-dimensional sandwich composites with different core material heights was established for simulation by means of the ANSYS finite element software, and the simulated values were compared with the experimental values. The results show that the low velocity impact resistance of the sandwich composite material increases with the increase of the core material height from the macroscopic angle, and the damage of the material with the height of 5 mm is more serious when the upper plate is damaged, and the simulation results have a good consistency with the experimental results. From the microscopic perspective, the warp, weft and junction warp are the main bearing bodies, and the resin matrix plays a secondary role. Under the impact of 5 J energy, the main failure modes of the material are resin deformation, fragmentation and fiber debonding.

Key words: three-dimensional sandwich composite, low velocity impact, core height, finite element method

中图分类号: 

  • TU599

图1

三维夹芯织物及其复合材料"

图2

芯材高度为5 mm材料结构模型"

表1

模型材料参数"

材料 弹性模量/
GPa
密度/
(g·cm-3)
拉伸强度/
GPa
泊松比
玻璃纤维 70 2.50 3.00 0.25
环氧树脂 1 1.20 0.07 0.38
结构钢 200 7.85 0.46 0.30

图3

2种芯材高度材料有限元模型"

图4

2种芯材高度整体材料应力云图"

图5

2种材料低速冲击后损伤形貌"

图6

5 J能量下2种材料低速冲击响应"

图7

2种材料各组分应力云图"

图8

2种材料应变云图"

[1] 顾伯洪, 孙宝忠 . 纺织结构复合材料冲击动力学[M]. 北京: 科学出版社, 2012: 1-20.
GU Bohong, SUN Baozhong. Impact Dynamics of Textile Structural Composites [M]. Beijing: Science Press, 2012: 1-20.
[2] ELIAS A, LAURIN F, KAMINISKI M , et al. Experimental and numerical investigations of low energy/velocity impact damage generated in 3D woven composite with polymer matrix[J]. Composite Structures, 2017,159:228-239.
doi: 10.1016/j.compstruct.2016.09.077
[3] RAVANDI M, TEO W S, TRAN L Q N , et al. Low velocity impact performance of stitched flax/epoxy composite laminates[J]. Composites Part B: Engineering, 2017,117:89-100.
doi: 10.1016/j.compositesb.2017.02.003
[4] LASCOUP B, ABOURA Z, KHELLIL K , et al. Impact response of three-dimensional stitched sandwich composite[J]. Composite Structures, 2010,92(2):347-353.
doi: 10.1016/j.compstruct.2009.08.012
[5] VAIDYA A S, VAIDYA U K, UDDIN N . Impact response of three-dimensional multifunctional sandwich composite[J]. Materials Science & Engineering A (Structural Materials: Properties, Microstructure and Processing), 2008,472(1/2):52-58.
[6] 曹海建, 钱坤, 盛东晓 , 等. 芯材高度对整体中空复合材料力学性能的影响[J]. 上海纺织科技, 2010,38(9):54-57.
CAO Haijian, QIAN Kun, SHENG Dongxiao , et al. Effect of core height on mechanical properties of hollow composites[J]. Shanghai Textile Science & Technology, 2010,38(9):54-57.
[7] 龚小辉, 赖家美, 陈乐乐 , 等. CF/GF层间混杂增强缝合泡沫夹芯复合材料低速冲击性能试验研究[J]. 塑料工业, 2017,45(11):104-108,126.
GONG Xiaohui, LAI Jiamei, CHEN Lele , et al. Experimental study on low velocity impact properties of CF/GF interlayer hybrid reinforced foam sandwich composites[J]. Plastic Industry, 2017,45(11):104-108,126.
[8] 杨莉 . ProE模型导入ANSYS问题的思考[J]. 科技传播, 2017,9(5):6-7.
YANG Li . ProE model import ANSYS problem thinking[J]. Science and Technology Communication, 2017,9(5):6-7.
[9] 巨文涛, 代卫卫 . ANSYS Workbench在结构瞬态动力学分析中的应用[J]. 内蒙古煤炭经济, 2014(8):110-113.
JU Wentao, DAI Weiwei . Application of ANSYS Workbench in structural transient dynamic analysis[J]. Inner Mongolia Coal Economy, 2014 ( 8):110-113.
[10] 朱长华, 赵宝, 裴浩楠 , 等. 基于ANSYS/LS-DYNA连续玄武岩纤维材料护栏碰撞吸能分析[J]. 沈阳大学学报(自然科学版), 2017(5):75-78.
ZHU Changhua, ZHAO Bao, PEI Haonan , et al. Collision energy absorption analysis of continuous basalt fiber fence based on ANSYS/LS-DYNA[J]. Journal of Shenyang University(Natural Science Edition), 2017 ( 5):75-78.
[11] 毛春见, 许希武, 田静 , 等. 缝合复合材料层板低速冲击损伤研究[J]. 固体力学学报, 2011,32(1):43-56.
MAO Chunjian, XU Xiwu, TIAN Jing , et al. Study on low velocity impact damage of stitched composite laminates[J]. Journal of Solid Mechanics, 2011,32(1):43-56.
[12] MOURA M F S F D MARQUES A T . Prediction of low velocity impact damage in carbon-epoxy laminates[J]. Composites Part A: Applied Science & Manufacturing, 2013,67(3):489-496.
[13] FENG D, AYMERICH F . Damage prediction in composite sandwich panels subjected to low-velocity impact[J]. Composites Part A: Applied Science and Manufacturing, 2013,52:12-22.
doi: 10.1016/j.compositesa.2013.04.010
[14] 钭李昕, 王秋成, 陈光耀 . 碳纤维复合材料低速冲击特性及损伤分析研究[J]. 机电工程, 2016,33(7):815-821.
YONG Lixin, WANG Qiucheng, CHEN Guangyao . Low-speed impact characteristics and damage analysis of carbon fiber composites[J]. Mechatronics Engineering, 2016,33(7):815-821.
[15] YANG B, WANG Z, ZHOU L , et al. Study on the low-velocity impact response and CAI behavior of foam-filled sandwich panels with hybrid facesheet[J]. Composite Structures, 2015,132:1129-1140.
doi: 10.1016/j.compstruct.2015.07.058
[16] 祝露, 刘伟庆, 方海 , 等. 腹板增强复合材料夹层板低速冲击试验与有限元分析[J]. 南京工业大学学报(自然科学版), 2017,39(5):126-132.
ZHU Lu, LIU Weiqing, FANG Hai , et al. Low speed impact test and finite element analysis of sandwich plate reinforced composite sandwich plates[J]. Journal of Nanjing University of Technology(Natural Science Edition), 2017,39(5):126-132.
[1] 王雅娴, 李艳梅. 吸能缓冲防护服装的研究进展[J]. 纺织学报, 2020, 41(05): 184-190.
[2] 刘倩楠, 张涵, 刘新金, 苏旭中. 基于ABAQUS的三原组织机织物拉伸力学性能模拟[J]. 纺织学报, 2019, 40(04): 44-50.
[3] 徐婉丽 常玉萍 马丕波. 负泊松比经编间隔织物的抗低速冲击性能[J]. 纺织学报, 2018, 39(11): 45-49.
[4] 金玉珍 胡小冬 林培锋 胡旭东. 喷气织机打纬机构及墙板的振动特性[J]. 纺织学报, 2016, 37(07): 131-136.
[5] 曹海建;钱坤;魏取福;李鸿顺. 三维整体中空复合材料低速冲击性能[J]. 纺织学报, 2009, 30(10): 70-74.
[6] 杨灵敏;焦亚男;高华斌. 三维编织复合材料低速冲击试验与分析[J]. 纺织学报, 2009, 30(05): 63-67.
[7] 陈志平;沈建民;王露芳. 基于接触的蒸汽定型锅应力分析与评定[J]. 纺织学报, 2005, 26(6): 65-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 薛元;曹建达;孙明宝;孙世元. 芯鞘型长丝/短纤包芯纱织物悬垂特性的研究[J]. 纺织学报, 2004, 25(03): 19 -20 .
[2] 郭秉臣. 毛纺直型精梳机圆梳的梳理速度及梳理效能的分析[J]. 纺织学报, 1984, 5(09): 30 -32 .
[3] 魏静. 翻折领翘势的变化[J]. 纺织学报, 2005, 26(5): 103 -105 .
[4] 李伟锋. 基于RS-485总线的土工膜水力性能测试仪研制[J]. 纺织学报, 2005, 26(1): 107 -109 .
[5] 金大滨;李良才. 环锭纱动态捻度测定仪[J]. 纺织学报, 1982, 3(10): 19 -20 .
[6] 张寿欣. 两级分布式布机监测系统通过鉴定[J]. 纺织学报, 1986, 7(05): 27 .
[7] 李红;郑来久. 改性亚麻染色性能的研究[J]. 纺织学报, 2002, 23(06): 10 -11 .
[8] 吴小琴;王府梅. 差别化纤维织物蓬松丰满度的预测[J]. 纺织学报, 2003, 24(05): 33 -34 .
[9] 林子务. 老机新工艺整理全毛哔叽的探讨[J]. 纺织学报, 1997, 18(04): 46 -48 .
[10] 吕家华;陈水林;华载文. 合成纤维织物的抗静电整理[J]. 纺织学报, 1995, 16(06): 59 -61 .