纺织学报 ›› 2019, Vol. 40 ›› Issue (06): 152-157.doi: 10.13475/j.fzxb.20180802906

• 综合述评 • 上一篇    下一篇

碳纤维增强树脂基复合材料的回收及其再利用研究进展

  


  • 收稿日期:2018-08-10 修回日期:2019-03-06 出版日期:2019-06-15 发布日期:2019-06-25

Research progress in recycling and reuse of carbon fiber reinforced resin composites

  • Received:2018-08-10 Revised:2019-03-06 Online:2019-06-15 Published:2019-06-25

摘要:

为有效回收碳纤维树脂基复合材料,避免资源浪费和环境污染,综述了热固性和热塑性树脂基碳纤维复合材料的不同回收方法及其进展,包括物理机械法、热回收法、溶剂解离法、熔融注塑和切片再塑法等,梳理了溶剂解离法的回收思路,介绍了针对碳纤维复合材料回收的可降解热固性树脂及回收方法,阐述了碳纤维增强热塑性树脂的回收机制。总结了目前碳纤维增强热固性树脂回收方法的回收效率低,设备要求高,再生碳纤维性能下降等特点,认为碳纤维增强热塑性树脂具备快速成型、成本低、能够多次回收利用的特点,适于碳纤维复合材料在民用领域大量应用的发展趋势。

关键词: 碳纤维, 热固性树脂, 热塑性树脂, 回收方法, 资源再利用

Abstract:

In order to recover carbon fiber reinforced resin composites(CFRP) effectively, avoid waste of resources and environmental pollution, recycling methods and progress of thermosetting and thermoplastic resin-based carbon fiber composites were reviewed in this paper. These methods include physical mechanical method, heat recovery, solvent dissociation, melt injection and slice remolding, etc. The recovery idea of solvent dissociation method was sorted out. The degradable thermosetting resin and its recovery method were introduced. The recycling mechanism of carbon fiber reinforced thermoplastic resin was described. The recycling methods of carbon fiber reinforced thermosetting resins were summarized, which have the characteristics of low recycling efficiency, high equipment requirements and poor performance of regenerated carbon fibers. It is considered that carbon fiber reinforced thermoplastic resin composite has the characteristics of rapid prototyping, low cost and multiple recycling, which is suitable for the development trend of large-scale application of CFRP in civil field.

Key words: carbon fiber, thermosetting resin, thermoplastic resin, recycling method, reutilization

[1] WITIK R A, TEUSCHER R, MICHAUD V, et al. Carbon fibre reinforced composite waste: An environmental assessment of recycling, energy recovery and landfilling[J]. Composites Part A, 2013, 49(1):89-99.
[2] PIMENTA S, PINHO S T. Recycling carbon fibre reinforced polymers for structural applications: Technology review and market outlook[J]. Waste Manag, 2011, 31(2):378-92.
[3] TAKAHASHI J, ISHIKAWA T. Next challenge in CFRTP for mass production automotive application[C]// 35th Sampe Seico Europe. 2014,181-188.
[4] PICKERING S J. Recycling technologies for thermoset composite materials—current status[J]. Composites Part A Applied Science & Manufacturing, 2006, 37(8):1206-1215.
[5] Ma Y, ZHANG Y, YANG Y. The Effect of Polyurethane Dispersion Treatment on Off-Axis Mechanical Properties of CFRTP and CFRP Woven Fabric Composites[C]// 13th Eco-Energy and Materials Science and Engineering Symposium, At Udonthani, Thailand, 2016:201-215.
[6] WU G, MA L, LIU L, et al. Interface enhancement of carbon fiber reinforced methylphenylsilicone resin composites modified with silanized carbon nanotubes[J]. Materials & Design, 2016, 89:1343-1349.
[7] 景鹏展, 朱姝, 余木火,等.基于碳纤维表面修饰制备碳纤维织物增强聚苯硫醚(CFF/PPS)热塑性复合材料[J]. 材料工程, 2016, 44(3):21-27.
JING P Z, ZHU S, YU M H,et al. Preparation of carbon fiber fabric reinforced polyphenylene sulfide(CCF/PPS) thermoplastic composites based on surface modification of carbon fiber[J]. Journal of Materials Engineering, 2016, 44(3):21-27.
[8] HAYASHI R, KOSUKEGAWA H, TAKAGI T. Evaluation of influence of surface chemical modification on fiber in interfacial shear strength between PP/PA polymer alloy and carbon single filament[J]. 2016, 4(50):1-15.
[9] AGEORGES C, YE L. State of the Art in Fusion Bonding of Polymer Composites[M]. Fusion Bonding of Polymer Composites. Springer London, 2002:7-64.
[10] PALMER J, GHITA O R, SAVAGE L, et al. Successful closed-loop recycling of thermoset composites. Composites Part A, 2009,40:490-498.
[11] OGI K, NISHIKAWA T, OKANO Y, et al. Mechanical properties of ABS resin reinforced with recycled CFRP. Adv Compos Mater 2007,16:181-194.
[12] PALMER J, SAVAGE L, GHITA O R, et al. Sheet moulding compound (SMC) from carbon ?bre recyclate. Composites Part A, 2010,41:1232-7.
[13] YANG Y, BOOM R, IRION B, et al. Recycling of composite materials[J]. Chemical Engineering & Processing Process Intensification, 2012, 51(1):53-68.
[14] MEYER L O, SCHULTE K. CFRP-recycling following a pyrolysis route: process optimization and potentials. Journal of Composite Material, 2009,43:1121-1132.
[15] PICKERING S J, KELLY R M, KENNERLEY J R,et al. A fluidised-bed process for the recovery of glass fibres from scrap thermoset composites. Composite Science Technology, 2000,60:509-523.
[16] LESTER E, KINGMAN S, WONG K H, et al. Microwave heating as a means for carbon ?bre recovery from polymer composites: a technical feasibility study. Materials Research Bbulletin, 2004,39:1549-56.
[17] YANG J, LIU J, LIU W, et al. Recycling of carbon fibre reinforced epoxy resin composites under various oxygen concentrations in nitrogen-oxygen atmosphere[J]. Journal of Analytical & Applied Pyrolysis, 2015, 112,253-261.
[18] PIMENTA S, PINHO S T, Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook, Waste Manage. 2011,31:378-392.
[19] YIP H L H, PICKERING S J, RUDD C D, Characterisation of carbon fibres recycled from scrap composites using fluidised bed process, Plastics Rubber and Composite,2002, 31: 278-282.
[20] MARSH G. Reclaiming value from post-use carbon composite[J]. Reinforced Plastics, 2008, 52(7):36-39.
[21] BINNER E, MEDIERO M, HUDDLE T, et al. Factors affecting the microwave coking of coals and the implications on microwave cavity design[J]. Fuel Processing Technology, 2014, 125(9):8-17.
[22] ?KESSON D, FOLTYNOWICZ Z,et al. Microwave pyrolysis as a method of recycling glass fibre from used blades of wind turbines[J]. Journal of Reinforced Plastic Composite, 2015,31(17):1136-1142.
[23] TORRE A, MARCO I D, CABALLERO B M, et al. Recycling by pyrolysis of thermoset composites: characteristics of the liquid and gaseous fuels obtained[J]. Fuel, 2000, 79(8):897-902.
[24] YAN H, LU C X, JING D Q, et al. Recycling of carbon fibers in epoxy resin composites using supercritical 1-propanol[J]. Carbon, 2016, 100(1):710-711.
[25] Ma J H, WANG X B, LI B, et al. Investigation on recycling technology of carbon fiber reinforced epoxy resin cured with amine[J]. Advanced Materials Research, 2009, 82:409-412.
[26] 邹镇岳,秦岩,李洋,等.压力法回收废旧碳纤维/环氧树脂复合材料[J].热固性树脂, 2015, 3:36-40.
ZOU Z Y, QIN Y,LI Y, et al.Pressure recovery of waste carbon fiber/epoxy composites[J]. Thermosetting Resin,2015,3:36-40.
[27] NIE W, LIU J, LIU W, et al. Decomposition of waste carbon fiber reinforced epoxy resin composites in molten potassium hydroxide[J]. Polymer Degradation & Stability, 2015, 111:247-256.
[28] JIANG G., PICKERING S J, LESTER E, et al. Characterisation of carbon fibres recycled from carbon fibre/epoxy resin composites using supercritical n-propanol[J]. Composite Science Technology.2016, 69:192-198.
[29] BAI A, WANG Z, FENG L, Chemical recycling of carbon fibres reinforced epoxy resin composites in oxygen supercritical water[J]. Materials & Design. 2010, 31: 999-1002.
[30] CHENG H, ZHANG J, HUANG H, et al. Mass transfer model of supercritical fluid degradation for carbon fiber composites[J]. Journal of Composite Materials, 2016, 51(8):23-30.
[31] LIU T, ZHANG M, GUO X, et al. Mild chemical recycling of aerospace fiber/epoxy composite wastes and utilization of the decomposed resin[J]. Polymer Degradation & Stability, 2017, 139:20-27.
[32] WANG Y, LIU J, WU G, et al. Recycling of carbon ?ber reinforced epoxy resin cured with anhydride in subcritical water[J]. Chinese Journal of Applied Chemistry, 2013,30: 643-647.
[33] 陈丕钰. 碳纤维增强复合材料的电化学回收方法研究[D]. 深圳大学, 2017:78-82.
CHEN Peiyu. Electrochemical recovery of carbon fiber reinforced composites[D]. Shenzhen University,2017:78-82.
[34] Shi J, Bao L. Optimum Decomposition Conditions for Glass Fiber Reinforced Plastic Recycling by Superheated Steam[J]. Japanese Journal of Applied Physics, 2011, 50(1):01-05.
[35] Shi J, Bao L, KOBAYASHI R, et al. Reusing recycled fibers in high-value fiber-reinforced polymer composites: Improving bending strength by surface cleaning[J]. Composites Science & Technology, 2012, 72(11):1298-1303.
[36] DENISSEN W, DROESBEKE M, NICOLAY R, et al. Chemical control of the viscoelastic properties of vinylogous urethane vitrimers[J]. Nature Communications, 2017, 8:14857.
[37] R?ttger M, DOMENECH T, VAND W R, et al. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis[J]. Science, 2017, 356(6333):62.
[38] 梁波,覃兵,李欣,碳纤维增强可降解环氧树脂基复合材料[C]//第二届中国国际复合材料科技大会论文集, 2010:72-78.
LIANG Bo, TAN Bing, LI Xin, Carbon fiber reinforced degradable epoxy resin matrix composites[C]// Second China International Conference on composite materials science and technology,2010:72-78.
[39] 于天淼, 高华兵, 王宝铭,等. 碳纤维增强热塑性复合材料成型工艺的研究进展[J]. 工程塑料应用, 2018,46(4):139-144.
YU tianmiao, GAO Huabing, WANG Baomin, et al. Reserch progress of molding process of carbon fiber reinforced thermoplastic composites[J]. Engineering Plastics Application, 2018,46(4):139-144.
[40] 刘旭, 一种连续纤维增强热塑性复合材料废料回收利用方法, CN103786352A[P]. 2014.
LIU Xu, A method for recycling waste of continuous fiber reinforced thermoplastic composites, CN103786352A[P]. 2014.
[41] LONGANA M L, ONG N, YU H N, et al. Multiple Closed Loop Recycling of Carbon Fibre Composites with the HiPerDiF (High Performance Discontinuous Fibre) Method[J]. Composite Structures, 2016, 153:271-277.
[42] GUELL D C, GRAHAM A L. Improved mechanical properties in hydrodynamically aligned, short-fiber composite materials[J]. Journal of Composite Material, 1996,30(1):2-12.
[43] FLEMMING T et al. A new aligned short-carbon-?ber-reinforced thermoplastic prepreg. Advnce Composite Material, 1996,5(2):151-159.
[44] WAN Y, TAKAHASHI J. Tensile and compressive properties of chopped carbon fiber tapes reinforced thermoplastics with different fiber lengths and molding pressures[J]. Composites Part A: Applied Science & Manufacturing, 2016, 87:271-281.
[45] YAMASHITA S, SONEHARA T, TAKAHASHI J, et al. Effect of thin-ply on damage behaviour of continuous and discontinuous carbon fibre reinforced thermoplastics subjected to simulated lightning strike[J]. Composites Part A: Applied Science & Manufacturing, 2017, 95:132-140.
[46] LIU X, TAKAHASHI J, WAN Y, et al. Determination of transverse flexural and shear moduli of chopped carbon fiber tape-reinforced thermoplastic by vibration[J]. Journal of Composite Materials, 2018, 52:21-31.
[47] 田小永, 刘腾飞, 杨春成,等. 高性能纤维增强树脂基复合材料3D打印及其应用探索[J]. 航空制造技术, 2016, 59(15):26-31.
TIAN Xiaoyong, LIU Tengfei, YANG Chuncheng, et al. 3D printing for high performance fiber reinforced polymer composites and exploration on its applications, Aeronautical Manufacturing Technology,2016, 59(15):26-31.
[1] 郑振荣 智伟 韩晨晨 赵晓明 裴晓园. 碳纤维织物在热流冲击下的热传递数值模拟[J]. 纺织学报, 2019, 40(06): 38-43.
[2] 陈悦 赵永欢 褚朱丹 庄志山 邱琳琳 杜平凡. 基于碳纤维及织物的柔性锂电池电极研究进展[J]. 纺织学报, 2019, 40(02): 173-180.
[3] 叶伟 孙雷 余进 孙启龙. 磁性颗粒/碳纤维轻质柔软复合材料制备及其吸波性能[J]. 纺织学报, 2019, 40(01): 97-102.
[4] 马晓红 檀江涛 秦志刚. 碳纤维二维编织管状织物的编织工艺[J]. 纺织学报, 2018, 39(06): 64-69.
[5] 袁汝旺 陈瑞 蒋秀明 周国庆. 碳纤维多层织机打纬机构运动学分析与尺度综合[J]. 纺织学报, 2017, 38(11): 137-142.
[6] 高雄 胡侨乐 马颜雪 张琦 魏毅 邱夷平. 不同结构厚截面三维机织碳纤维复合材料的弯曲性能对比[J]. 纺织学报, 2017, 38(09): 66-71.
[7] 王利娜 石素宇 辛长征 王永杰 葛正霞. 聚酯/棕榈基多孔碳纤维杂化膜的结晶和力学性能[J]. 纺织学报, 2017, 38(08): 6-10.
[8] 宋磊磊 赵玉芬 李嘉禄 陈利 耿伟. 基于混合韦伯分布的碳纤维针刺毡结构表征[J]. 纺织学报, 2017, 38(06): 52-57.
[9] 姚艳波 余木火 刘安华. 两相沥青前驱体及其碳纤维截面结构调控[J]. 纺织学报, 2017, 38(05): 1-7.
[10] 沈雷 任祥放 刘皆希 谢展. 保暖充电老年服装的设计与开发[J]. 纺织学报, 2017, 38(04): 103-108.
[11] 龙祥 卢雪峰 张建民 吕凯明 钱坤. 分层接结三维机织预制体增强酚醛树脂基材料的摩擦性能[J]. 纺织学报, 2017, 38(02): 75-80.
[12] 程杰 陈利. 利用激光扫描点云的碳纤维织物表面三维模型重建[J]. 纺织学报, 2016, 37(4): 54-59.
[13] 刘薇 蒋秀明 杨建成 刘国辉 侯仰强. 碳纤维多层角联机织装备的集成设计[J]. 纺织学报, 2016, 37(4): 128-136.
[14] 海滇 李树锋 丁晓 韩永兴 邓飞燕 张艳 程博闻. 高分子质量聚丙烯腈基碳纳米纤维的制备[J]. 纺织学报, 2016, 37(3): 1-5.
[15] 徐威 夏磊 周兴海 西鹏 程博闻. 纺丝工艺及预氧化条件对离心纺聚丙烯腈基纳米碳纤维的影响[J]. 纺织学报, 2016, 37(2): 7-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!