纺织学报 ›› 2020, Vol. 41 ›› Issue (09): 167-173.doi: 10.13475/j.fzxb.20200307807

• 专栏:生物医用纺织材料及其制品 • 上一篇    下一篇

聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用

潘璐1, 程亭亭1, 徐岚1,2()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215123
    2.现代丝绸国家工程实验室, 江苏 苏州 215123
  • 收稿日期:2020-03-30 修回日期:2020-06-04 出版日期:2020-09-15 发布日期:2020-09-25
  • 通讯作者: 徐岚
  • 作者简介:潘璐(1996—),女,硕士生。主要研究方向为纳米纤维的制备及其应用。
  • 基金资助:
    国家自然科学基金项目(11672198)

Preparation of polycaprolactone/polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffold

PAN Lu1, CHENG Tingting1, XU Lan1,2()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
    2. National Engineering Laboratory for Modern Silk, Suzhou, Jiangsu 215123, China
  • Received:2020-03-30 Revised:2020-06-04 Online:2020-09-15 Published:2020-09-25
  • Contact: XU Lan

摘要:

为使细胞在静电纺纳米纤维支架上得到更佳的生长与黏附,采用改进的静电纺丝装置制备具有良好生物相容性的聚己内酯(PLC)/聚乙二醇(PEG)大孔径复合纳米纤维膜,探究纺丝溶液中溶质质量配比与溶液质量分数对纳米纤维膜形貌及性能的影响,确定最佳工艺参数;将最佳工艺条件下制备的纳米纤维膜初步应用于组织工程,并与传统静电纺丝装置制备的纤维膜进行细胞相容性对比分析。结果表明:当PLC和PEG的混纺质量比为80∶20,纺丝溶液质量分数为25%时,获得的PCL/PEG大孔径纳米纤维膜质量最好;与传统静电纺PCL/PEG纳米纤维膜相比,PCL/PEG大孔径纳米纤维膜更利于细胞的生长和增殖,更适合作为组织工程支架材料。

关键词: 静电纺丝, 大孔径纳米纤维膜, 组织工程支架, 聚己内酯, 聚乙二醇

Abstract:

In order to improve the growth and adhesion of cells on electrospun nanofiber scaffolds, a modified electrospinning (ES) device was used to prepare polycaprolactone (PLC)/polyethylene glycol (PEG) composite nanofiber membranes (CNFMs) with large pore sizes, aiming for good biocompatibility. The influences of the composition and mass fraction of spinning solution on the morphology and properties of the CNFMs were investigated, and the optimal spinning parameters were determined. The CNFMs obtained using the modified ES under the optimal conditions were taken as tissue engineering scaffold, and the cytocompatibility of the CNFMs was compared with that of the CNFMs prepared by the traditional ES. The results show that when the blend mass ratio of PLC and PEG is 80∶20 and the mass fraction of spinning solution is 25%, the quality of PCL/PEG CNFMs with large pore sizes is the best. Moreover, compared with the PCL/PEG CNFMs obtained by the traditional ES, the PCL/PEG CNFMs with large pore sizes supply a more conducive environment for the cell growth and proliferation, and are more suitable to be used as tissue engineering scaffold materials.

Key words: electrospinning, nanofiber membranes with large pore sizes, tissue engineering scaffold, polycaprolactone, polyethylene glycol

中图分类号: 

  • TS131.9

图1

改进的静电纺丝装置原理图"

图2

不同PEG和PCL质量比纳米纤维膜扫描电镜照片(×10 000)"

表1

不同PEG和PCL质量比纳米纤维膜的直径统计结果"

PCL与PEG的质量比 平均直径/nm 标准差/nm 置信区间/nm
30:70 187.30 82.88 ±16.24
50:50 223.14 81.45 ±15.96
70:30 306.55 135.39 ±26.54
80:20 336.40 139.66 ±27.37
90:10 364.01 295.17 ±57.85

表2

不同PCL和PEG质量比纳米纤维膜的力学性能"

PCL与PEG的质量比 断裂强度/MPa 断裂伸长率/%
30:70 0.62 25.13
50:50 0.90 57.13
70:30 1.51 83.80
80:20 2.46 87.15
90:10 3.71 92.43

图3

不同PCL/PEG质量分数纳米纤维的形貌(×10 000)"

表3

不同PCL/PEG质量分数纳米纤维的直径统计结果"

溶液质量分数/% 平均直径/nm 标准差/nm 置信区间/nm
15 130.56 52.01 ±10.19(微球)
20 168.63 86.62 ±16.98(微球)
25 335.95 136.41 ±26.74
30 340.23 138.19 ±27.08

表4

不同PCL/PEG质量分数纳米纤维膜的力学性能"

溶液质量分数/% 断裂强度/MPa 断裂伸长率/%
15 0.31 68.91
20 0.81 85.15
25 2.46 87.14
30 2.78 93.40

图4

传统和改进静电纺PCL/PEG纳米纤维膜的扫描电镜照片(×2 000)"

表5

传统和改进静电纺PCL/PEG纳米纤维膜的孔面积统计结果"

纺丝方式 平均孔面积/μm2 标准差/μm2 置信区间/μm2
传统静电纺 9.00 2.94 ±0.41
改进静电纺 15.22 3.59 ±0.50

图5

人脐静脉内皮细胞在纳米纤维膜上的黏附和增殖情况"

图6

培养不同时间时人脐静脉内皮细胞在传统和改进的纳米纤维膜上的扫描电镜照片(×600)"

[1] 李奇薇, 李超婧, 王富军, 等. 纤维基组织工程支架结构对细胞行为的影响[J]. 中国生物医学工程学报, 2018,37(3):372-379.
LI Qiwei, LI Chaojing, WANG Fujun, et al. Effects of scaffold structure on cellular behavior[J]. Journal of Chinese Biomedical Engineering, 2018,37(3):372-379.
[2] NAM J, HUANG Y, AGARWAL S, et al. Improved cellular infiltration in electrospun fiber via engineered porosity[J]. Tissue Engineering, 2007,13(9):2249-2257.
doi: 10.1089/ten.2006.0306 pmid: 17536926
[3] LEONG M F, RASHEED M Z, LIM T C, et al. In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(d,l-lactide) scaffold fabricated by cryogenic electrospinning technique[J]. Journal of Biomedical Materials Research Part A, 2009,91(1):231-240.
pmid: 18814222
[4] LEVORSON E J, RAMAN S P, CHENNAZHI K P, et al. Fabrication and characterization of multiscale electrospun scaffolds for cartilage regeneration[J]. Biomedical Materials, 2013,8(1):014103.
doi: 10.1088/1748-6041/8/1/014103 pmid: 23353096
[5] LEE J B, JEONG S I, BAE M S, et al. Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration[J]. Tissue Engineering Part A, 2011,17(21/22):2695-2702.
[6] RNJAK-KOVACINA J, WISE S G, LI Z, et al. Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering[J]. Biomaterials, 2011,32(28):6729-6736.
doi: 10.1016/j.biomaterials.2011.05.065 pmid: 21683438
[7] BLAKENEY B A, TAMBRALLI A, ANDERSON J M, et al. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold[J]. Biomaterials, 2011,32(6):1583-1590.
doi: 10.1016/j.biomaterials.2010.10.056 pmid: 21112625
[8] SHIM I K, SUH W H, LEE S Y, et al. Chitosan nano-/microfibrous double-layered membrane with rolled-up three-dimensional structures for chondrocyte cultiva-tion[J]. Journal of Biomedical Materials Research Part A, 2009,90(2):595-602.
pmid: 18563820
[9] GU B K, PARK S J, KIM M S, et al. Fabrication of sonicated chitosan nanofiber mat with enlarged porosity for use as hemostatic materials[J]. Carbohydrate Polymers, 2013,97(1):65-73.
doi: 10.1016/j.carbpol.2013.04.060 pmid: 23769518
[10] CHENG Tingting, LI Siqi, XU Lan, et al. Controllable preparation and formation mechanism of nanofiber membranes with large pore sizes using a modified electrospinning[J]. Materials & Design, 2019,178:107867.
[11] 彭兰兰, 杨庆, 沈新元, 等. 聚ε-己内酣聚乙二醇共混纳米纤维的静电纺丝研究[J]. 合成纤维, 2008,37(11):25-30.
PENG Lanlan, YANG Qing, SHEN Xinyuan, et al. Study on electrospinning of poly-hexane halide polyethylene glycol blended nanofibers[J]. Synthetic Fiber in China, 2008,37(11):25-30.
[12] 邹爽, 赵金松, 陈驰. 静电纺丝技术的影响因素及应用研究综述[J]. 河南科技, 2019(5):75-77.
ZOU Shuang, ZHAO Jinsong, CHEN Chi. Review on the influence factors and application of electrospinning technology[J]. Henan Science & Technology, 2019(5):75-77.
[13] 邢同海. 改性聚己内酯纤维膜的制备及性能表征[D]. 杭州:浙江理工大学, 2015: 18.
XING Tonghai. Preparation and characterization of modified polycaprolactone fiber membrane[D]. Hangzhou:Zhejiang Sci-Tech University, 2015: 18.
[14] 林俊杰, 许伟鸿, 邓玲利, 等. SA溶液浓度对乳液静电纺丝SA/PCL纳米纤维成形的影响[J]. 合成纤维工业, 2017,40(6):7-11.
LIN Junjie, XU Weihong, DENG Lingli, et al. Effect of SA solution concentration on formation of SA/PCL nanofiber via emulsion electrospinning process[J]. China Synthetic Fiber Industry, 2017,40(6):7-11.
[1] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[2] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/ 线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[3] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/ 纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[4] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[5] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[6] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/ FeCl3 复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20.
[7] 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26.
[8] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[9] 王子希, 胡毅. 基于ZnCo2 O4 的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18.
[10] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[11] 吴红, 刘呈坤, 毛雪, 阳智, 陈美玉. 柔性ZrO2 纳米纤维膜的制备及其应用研究现状[J]. 纺织学报, 2020, 41(07): 167-173.
[12] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[13] 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/ 聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26.
[14] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
[15] 洪贤良, 陈小晖, 张建青, 刘俊杰, 黄晨, 丁伊可, 洪慧. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41(06): 174-182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!