纺织学报 ›› 2020, Vol. 41 ›› Issue (10): 178-187.doi: 10.13475/j.fzxb.20190704610

• 综合述评 • 上一篇    下一篇

织物阻燃表面处理技术研究进展

刘晋旭, 刘鹏清()   

  1. 四川大学 高分子科学与工程学院, 四川 成都 610065
  • 收稿日期:2019-07-15 修回日期:2020-07-01 出版日期:2020-10-15 发布日期:2020-10-27
  • 通讯作者: 刘鹏清
  • 作者简介:刘晋旭(1997—),男。主要研究方向为织物阻燃处理。
  • 基金资助:
    国家重点研发计划项目(2016YFB1200602)

Advances in flame-retardant surface treatments for textiles

LIU Jinxu, LIU Pengqing()   

  1. College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
  • Received:2019-07-15 Revised:2020-07-01 Online:2020-10-15 Published:2020-10-27
  • Contact: LIU Pengqing

摘要:

为进一步提高阻燃纤维和织物的实用性,并拓宽其应用领域,综述了近期在进一步提高织物阻燃表面处理技术的处理品质和多功能化方面的研究进展。基于物理沉积法、化学表面改性法、溶胶-凝胶法和层层自组装法,阐述了提高表面处理品质,如耐水洗性、机械稳定性和力学强度等方面的研究结果,在此基础上,叙述了多功能阻燃表面处理技术的优势和应用状况。指出未来的织物阻燃表面处理技术发展重点将是如何有机地结合高品质与多功能,实现功能性阻燃织物的实用化,以此推动织物表面处理技术在可穿戴电子、家具、衣物和防护用品等领域的广泛应用。

关键词: 阻燃, 多功能织物, 表面处理, 溶胶-凝胶法

Abstract:

To further improve the practicability and extend the applications of flame-retardant fibers and fabrics, recent advances of high-quality and multifunctional surface treatments for textiles were reviewed. Focusing on physical deposition, chemical modification, sol-gel process, and layer-by-layer self-assembly, research lierature on the development of the treatment qualities, such as washability, mechanical robustness, and mechanical strength were summarized. Furthermore, advantages and applications of multifunctional flame-retardant surface treatments were scrutinized. The review indicates that future developments of flame-retardant surface treatments for textiles will be concentrated on the efficient combination of high quality to realize the practical and functionalized applications of multifunctional flame-retardant textiles and on the applications of surface treatments in wearable electronics, furniture, clothing, and protective equipment.

Key words: flame-retardant, multi-function fabric, surface treatment, sol-gel

中图分类号: 

  • TS195.6

图1

溶胶-凝胶过程制备阻燃涂层的反应机制及工艺流程(M为硅或金属原子)"

图2

层层自组装法制备阻燃涂层的流程及涂层结构"

[1] 李红燕, 张渭源. 纤维及织物阻燃技术综论[J]. 材料科学与工程学报, 2007(5):798-801.
LI Hongyan, ZHANG Weiyuan. Current status and development of fire-proof finishing methods for fiber and textile[J]. Journal of Materials Science and Engineering, 2007(5):798-801.
[2] 汪建红. 织物阻燃剂的发展现状与展望[J]. 河南科技学院学报(自然科学版), 2014,42(3):52-55.
WANG Jianhong. The status quo and expectation of fabric flame retardant[J]. Journal of Henan Institute of Science and Technology (Nature Sciences Edition), 2014,42(3):52-55.
[3] LAZAR S T, KOLIBABA T J, GRUNLAN J C. Flame-retardant surface treatments[J]. Nature Reviews Materials, 2020,5(4):259-275.
doi: 10.1038/s41578-019-0164-6
[4] 王鸣义. 高品质阻燃聚酯纤维及其织物的技术进展和趋势[J]. 纺织导报, 2018 (2):13-22,24.
WANG Mingyi. Technological development of high-quality flame-retardant polyester fiber and its fabric[J]. China Textile Leader, 2018 (2):13-22,24.
[5] 董朝红. 棉用含磷氮元素聚硅氧烷阻燃剂的制备及性能研究[D]. 无锡: 江南大学, 2014: 1-2.
DONG Chaohong. Preparation and properties of polysiloxane flame retardants containing phophorus and nitrogen elements for cotton fabrics[D]. Wuxi: Jiangnan University, 2014: 1-2.
[6] ZHOU Q, WU W, ZHOU S, et al. Polydopamine-induced growth of mineralized γ-FeOOH nanorods for construction of silk fabric with excellent superhydrophobicity, flame retardancy and UV resistance[J]. Chemical Engineering Journal, 2020,382:122988.
doi: 10.1016/j.cej.2019.122988
[7] 于志辉. 军用高强涤纶面料的阻燃拒水多功能复合整理[D]. 上海: 东华大学, 2018: 1-3.
YU Zhihui. Flame-retardant and water-repellent multifunctional finishing of high-strength polyester fabric for military[D]. Shanghai: Donghua University, 2018: 1-3.
[8] 韩栋, 李娜娜, 封严, 等. 纺织材料抗紫外改性的研究进展[J]. 纺织学报, 2014,35(4):160-164.
HAN Dong, LI Nana, FENG Yan, et al. Recent progress of ultraviolet resistant modification for textiles[J]. Journal of Textile Research, 2014,35(4):160-164.
[9] LI S, HUANG J, CHEN Z, et al. A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications[J]. Journal of Materials Chemistry A, 2017,5(1):31-55.
doi: 10.1039/C6TA07984A
[10] JIA L, ZHANG G, XU L, et al. Robustly superhydrophobic conductive textile for efficient electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2019,11(1):1680-1688.
doi: 10.1021/acsami.8b18459 pmid: 30520621
[11] PARK M, IM J, SHIN M, et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres[J]. Nature Nanotechnology, 2012,7(12):803-809.
doi: 10.1038/NNANO.2012.206
[12] 李广莎, 张兰, 高琴文, 等. 涤纶织物阻燃拒水拒油多功能整理研究[J]. 印染助剂, 2016,33(6):45-48.
LI Guangsha, ZHANG Lan, GAO Qinwen, et al. Study on flame retardant, water and oil repellent multi-functional finishing of polyester fabric[J]. Textile Auxiliaries, 2016,33(6):45-48.
[13] 陈兵. 抗菌—阻燃复合功能助剂的制备及对棉织物的应用性能研究[D]. 青岛: 青岛大学, 2019: 1-2.
CHEN Bing. Preparation of antibacterial-flame retardant multifunctional auxiliary and its application on cotton fabrics[D]. Qingdao: Qingdao University, 2019: 1-2.
[14] CHEN S S, LI X, LI Y, et al. Intumescent flame-retardant and self-sealing superhydrophobic soatings on cotton fabric[J]. ACS Nano, 2015,9(4):4070-4076.
doi: 10.1021/acsnano.5b00121 pmid: 25777158
[15] FANG F, XIAO D Z, ZHANG X, et al. Construction of intumescent flame retardant and antimicrobial coating on cotton fabric via layer-by-layer assembly technology[J]. Surface & Coatings Technology, 2015,276:726-734.
[16] MATEOS A J, CAIN A A, GRUNLAN J C. Large-scale continuous immersion system for layer-by-layer deposition of flame retardant and conductive nanocoatings on fabric[J]. Industrial & Engineering Chemistry Research, 2014,53(15):6409-6416.
[17] 吴华, 张红霞, 黄锦波, 等. 阻燃抗紫外线复合功能窗帘交织物的性能[J]. 纺织学报, 2016,37(6):54-58.
WU Hua, ZHANG Hongxia, HUANG Jinbo, et al. Properties of curtain fabric with flame-retardant and anti-ultraviolet composite function[J]. Journal of Textile Research, 2016,37(6):54-58.
[18] CHEN D Q, WANG Y Z, HU X P, et al. Flame-retardant and anti-dripping effects of a novel char-forming flame retardant for the treatment of poly(ethylene terephthalate) fabrics[J]. Polymer Degradation and Stability, 2005,88(2):349-356.
doi: 10.1016/j.polymdegradstab.2004.11.010
[19] HORROCKS A R, WANG M Y, HALL M E, et al. Flame retardant textile back-coatings: part 2: Effectiveness of phosphorus-containing flame retardants in textile back-coating formulations[J]. Polymer International, 2000,49(10):1079-1091.
doi: 10.1002/(ISSN)1097-0126
[20] WESOLEK D, GIEPARDA W. Single- and multiwalled carbon nanotubes with phosphorus based flame retardants for textiles[J]. Journal of Nanomaterials, 2014,2014:727494.
[21] BUTSTRAEN C, SALAUN F, DEVAUX E, et al. Application of flame-retardant double-layered shell microcapsules to nonwoven polyester[J]. Polymers, 2016,8(7):267.
doi: 10.3390/polym8070267
[22] GIRAUD S, BOURBIGOT S, ROCHERY M, et al. Flame retarded polyurea with microencapsulated ammonium phosphate for textile coating[J]. Polymer Degradation and Stability, 2005,88(1):106-113.
doi: 10.1016/j.polymdegradstab.2004.01.028
[23] ZOPE I S, FOO S, SEAH D G J, et al. Development and evaluation of a water-based flame retardant spray coating for cotton fabrics[J]. ACS Applied Materials & Interfaces, 2017,9(46):40782-40791.
doi: 10.1021/acsami.7b09863 pmid: 29035506
[24] ZHOU T, HE X, GUO C, et al. Synjournal of a novel flame retardant phosphorus/nitrogen/siloxane and its application on cotton fabrics[J]. Textile Research Journal, 2014,85(7):701-708.
doi: 10.1177/0040517514555801
[25] YAN X, ZHOU W, ZHAO X, et al. Preparation, flame retardancy and thermal degradation behaviors of polyacrylonitrile fibers modified with diethylenetriamine and zinc ions[J]. Journal of Thermal Analysis and Calorimetry, 2015,124(2):719-728.
doi: 10.1007/s10973-015-5180-1
[26] WANG L H, REN Y L, WANG X L, et al. Fire retardant viscose fiber fabric produced by graft polymerization of phosphorus and nitrogen-containing monomer[J]. Cellulose, 2016,23(4):2689-2700.
doi: 10.1007/s10570-016-0970-6
[27] DONG Q, CHEN K, JIN X, et al. Investigation of flame retardant flexible polyurethane foams containing dopo immobilized titanium dioxide nanoparticles[J]. Polymers, 2019,11(1):75.
doi: 10.3390/polym11010075
[28] GAO D, ZHAO P, LYU B, et al. Composite based on poly(acrylic acid)/modified attapulgite/zinc oxide as a flame retardant of cotton fabrics[J]. Cellulose, 2020,27(5):2873-2886.
doi: 10.1007/s10570-019-02948-2
[29] WANG H, CAO M, ZHAO H, et al. Double-cross-linked aerogels towards ultrahigh mechanical properties and thermal insulation at extreme environment[J]. Chemical Engineering Journal, 2020,399:125698.
doi: 10.1016/j.cej.2020.125698
[30] GAO D G, LI R, LV B, et al. Flammability, thermal and physical-mechanical properties of cationic polymer/montmorillonite composite on cotton fabric[J]. Composites Part B-Engineering, 2015,77:329-337.
doi: 10.1016/j.compositesb.2015.03.061
[31] SAMANTA A K, BHATTACHARYYA R, JOSE S, et al. Fire retardant finish of jute fabric with nano zinc oxide[J]. Cellulose, 2017,24(2):1143-1157.
doi: 10.1007/s10570-016-1171-z
[32] XING W Y, SONG L, LV P, et al. Preparation, flame retardancy and thermal behavior of a novel UV-curable coating containing phosphorus and nitrogen[J]. Materials Chemistry and Physics, 2010,123(2/3):481-486.
doi: 10.1016/j.matchemphys.2010.04.044
[33] XING W Y, SONG L, JIE G X, et al. Synjournal and thermal behavior of a novel UV-curable transparent flame retardant film and phosphorus-nitrogen synergism of flame retardancy[J]. Polymers for Advanced Technologies, 2011,22(12):2123-2129.
doi: 10.1002/pat.1732
[34] XING W Y, SONG L, HU Y, et al. Thermal properties and combustion behaviors of a novel UV-curable flame retarded coating containing silicon and phosphorus[J]. Polymer Degradation and Stability, 2009,94(9):1503-1508.
doi: 10.1016/j.polymdegradstab.2009.04.037
[35] MAYER-GALL T, KNITTEL D, GUTMANN J S, et al. Permanent flame retardant finishing of textiles by allyl-functionalized polyphosphazenes[J]. ACS Applied Materials & Interfaces, 2015,7(18):9349-9363.
doi: 10.1021/acsami.5b02141 pmid: 25902050
[36] XU L J, WANG W, YU D. Durable flame retardant finishing of cotton fabrics with halogen-free organophosphonate by UV photoinitiated thiol-ene click chemistry[J]. Carbohydrate Polymers, 2017,172:275-283.
doi: 10.1016/j.carbpol.2017.05.054 pmid: 28606535
[37] 王菊生. 染整工艺原理(第二册)[M]. 北京: 中国纺织出版社, 1984: 225-226.
WANG Jusheng. Principles of dyeing and finishing (Volume 2)[M]. Beijing: China Textile & Apparel Press, 1984: 225-226.
[38] ALONGI J, MALUCELLI G. State of the art and perspectives on sol-gel derived hybrid architectures for flame retardancy of textiles[J]. Journal of Materials Chemistry, 2012,22(41):21805-21809.
doi: 10.1039/c2jm32513f
[39] VASILJEVIC J, HADZIC S, JERMAN I, et al. Study of flame-retardant finishing of cellulose fibres: Organic-inorganic hybrid versus conventional organophos-phonate[J]. Polymer Degradation and Stability, 2013,98(12):2602-2608.
doi: 10.1016/j.polymdegradstab.2013.09.020
[40] HRIBERNIK S, SMOLE M S, KLEINSCHEK K S, et al. Flame retardant activity of SiO2-coated regenerated cellulose fibres[J]. Polymer Degradation and Stability, 2007,92(11):1957-1965.
doi: 10.1016/j.polymdegradstab.2007.08.010
[41] ALONGI J, CIOBANU M, TATA J, et al. Thermal stability and flame retardancy of polyester, cotton, and relative blend textile fabrics subjected to sol-gel treatments[J]. Journal of Applied Polymer Science, 2011,119(4):1961-1969.
doi: 10.1002/app.32954
[42] CIRELI A, ONAR N, EBEOGLUGIL M F, et al. Development of flame retardancy properties of new halogen-free phosphorous Doped SiO2 Thin films on fabrics[J]. Journal of Applied Polymer Science, 2007,105(6):3748-3756.
doi: 10.1002/(ISSN)1097-4628
[43] ZHANG Q H, ZHANG W, HUANG J Y, et al. Flame retardance and thermal stability of wool fabric treated by boron containing silica sols[J]. Materials & Design, 2015,85:796-799.
[44] LIU C, XING T L, WEI B J, et al. Synergistic effects and mechanism of modified silica sol flame retardant systems on silk fabric[J]. Materials, 2018,11(10):1842.
doi: 10.3390/ma11101842
[45] ALONGI J, COLLEONI C, ROSACE G, et al. Sol-gel derived architectures for enhancing cotton flame retardancy: effect of pure and phosphorus-doped silica phases[J]. Polymer Degradation and Stability, 2014,99:92-98.
doi: 10.1016/j.polymdegradstab.2013.11.020
[46] KUNDU C K, SONG L, HU Y. Sol-gel coatings from DOPO-alkoxysilanes: efficacy in fire protection of polyamide 66 textiles[J]. European Polymer Journal, 2020,125:109483.
doi: 10.1016/j.eurpolymj.2020.109483
[47] MALUCELLI G. Surface-engineered fire protective coatings for fabrics through sol-gel and layer-by-layer methods: an overview[J]. Coatings, 2016,6(3):33.
doi: 10.3390/coatings6030033
[48] STOCKTON W B, RUBNER M F. Molecular-level processing of conjugated polymers: 4: Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions[J]. Macromolecules, 1997,30(9):2717-2725.
doi: 10.1021/ma9700486
[49] FANG M, KASCHAK D M, SUTORIK A C, et al. A 'mix and match' ionic-covalent strategy for self-assembly of inorganic multilayer films[J]. Journal of the American Chemical Society, 1997,119(50):12184-12191.
doi: 10.1021/ja972569e
[50] LI Y C, SCHULZ J, GRUNLAN J C. Polyelectrolyte/nanosilicate thin-film assemblies: influence of pH on growth, mechanical behavior, and flammability[J]. ACS Appl Mater Interfaces, 2009,1(10):2338-47.
doi: 10.1021/am900484q pmid: 20355871
[51] LI Y C, SCHULZ J, MANNEN S, et al. Flame retardant behavior of polyelectrolyte-clay thin film assemblies on cotton fabric[J]. ACS Nano, 2010,4(6):3325-3337.
pmid: 20496883
[52] 欧育湘, 辛菲, 赵毅, 等. 近5年问世的聚合物/无机物纳米复合材料的阻燃性[J]. 高分子材料科学与工程, 2007 (5):1-5.
OU Yuxiang, XIN Fei, ZHAO Yi, et al. Flame retardancy of polymer/inorganic nanocomposites developed in the last five years[J]. Polymer Materials Science and Engineering, 2007 (5):1-5.
[53] HUANG G B, YANG J G, GAO J R, et al. Thin films of intumescent flame retardant-polyacrylamide and exfoliated graphene oxide fabricated via layer-by-layer assembly for improving flame retardant properties of cotton fabric[J]. Industrial & Engineering Chemistry Research, 2012,51(38):12355-12366.
[54] LI Y C, MANNEN S, MORGAN A B, et al. Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric[J]. Advanced Materials, 2011,23(34):3926-31.
doi: 10.1002/adma.201101871 pmid: 21800384
[55] LAUFER G, KIRKLAND C, MORGAN A B, et al. Intumescent multilayer nanocoating, made with renewable polyelectrolytes, for flame-retardant cotton[J]. Biomacromolecules, 2012,13(9):2843-2848.
pmid: 22897635
[56] CAROSIO F, DI BLASIO A, ALONGI J, et al. Green DNA-based flame retardant coatings assembled through Layer by Layer[J]. Polymer, 2013,54(19):5148-5153.
doi: 10.1016/j.polymer.2013.07.029
[57] CAROSIO F, ALONGI J. Few durable layers suppress cotton combustion due to the joint combination of layer by layer assembly and UV-curing[J]. RSC Advances, 2015,5(87):71482-71490.
doi: 10.1039/C5RA11856E
[58] PAN Y, WANG W, LIU L X, et al. Influences of metal ions crosslinked alginate based coatings on thermal stability and fire resistance of cotton fabrics[J]. Carbohydrate Polymers, 2017,170:133-139.
doi: 10.1016/j.carbpol.2017.04.065 pmid: 28521978
[59] CAROSIO F, DI BLASIO A, CUTTICA F, et al. Flame retardancy of polyester fabrics treated by spray-assisted layer-by-layer silica architectures[J]. Industrial & Engineering Chemistry Research, 2013,52(28):9544-9550.
[60] 沈家力, 刘天尧, 高扬, 等. 静电自组装法制备阻燃抗菌染色蚕丝织物[J]. 印染, 2015,41(6):1-5.
SHEN Jiali, LIU Tianyao, GAO Yang, et al. Preparation of flame-retardant and antibacterial silk dyeings by self-assembly procedure[J]. China Dyeing & Finishing, 2015,41(6):1-5.
[61] 沈家力, 潘娜, 代翱杰, 等. 静电自组装阻燃蚕丝织物的染色性能[J]. 印染, 2015,41(1):1-4.
SHEN Jiali, PAN Na, DAI Aojie, et al. Dyeing behaviors of flame retardant silk fabric prepared by electrostatic layer-by-layer assembly procedure[J]. China Dyeing & Finishing, 2015,41(1):1-4.
[62] XUE C H, ZHANG L, WEI P, et al. Fabrication of superhydrophobic cotton textiles with flame retar-dancy[J]. Cellulose, 2016,23(2):1471-1480.
doi: 10.1007/s10570-016-0885-2
[63] QIN H, LI X, ZHANG X, et al. Preparation and performance testing of superhydrophobic flame retardant cotton fabric[J]. New Journal of Chemistry, 2019,43(15):5839-5848.
doi: 10.1039/C9NJ00307J
[64] CHEN T, HONG J, PENG C, et al. Superhydrophobic and flame retardant cotton modified with DOPO and fluorine-silicon-containing crosslinked polymer[J]. Carbohydrate Polymers, 2019,208:14-21.
pmid: 30658784
[65] HASSAN M M, MCLAUGHLIN J R. Multi-functional wool fabrics by graft-copolymerisation with polystyrene sulphonate: their enhanced fire retardancy, mechanical properties, and stain-resistance[J]. New Journal of Chemistry, 2018,42(23):18919-18927.
doi: 10.1039/C8NJ03686A
[66] ZHANG D, WILLIAMS B L, BECHER E M, et al. Flame retardant and hydrophobic cotton fabrics from intumescent coatings[J]. Advanced Composites and Hybrid Materials, 2017,1(1):177-184.
doi: 10.1007/s42114-017-0006-1
[67] LIN D, ZENG X, LI H, et al. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction[J]. Journal of Colloid and Interface Science, 2019,533:198-206.
doi: 10.1016/j.jcis.2018.08.060 pmid: 30165297
[68] VASILJEVIC J, TOMSIC B, JERMAN I, et al. Novel multifunctional water- and oil-repellent, antibacterial, and flame-retardant cellulose fibres created by the sol-gel process[J]. Cellulose, 2014,21(4):2611-2623.
doi: 10.1007/s10570-014-0293-4
[69] CHEN X X, FANG F, ZHANG X, et al. Flame-retardant, electrically conductive and antimicrobial multifunctional coating on cotton fabric via layer-by-layer assembly technique[J]. RSC Advances, 2016,6(33):27669-27676.
doi: 10.1039/C5RA26914H
[70] FANG F, CHEN X, ZHANG X, et al. Environmentally friendly assembly multilayer coating for flame retardant and antimicrobial cotton fabric[J]. Progress in Organic Coatings, 2016,90:258-266.
doi: 10.1016/j.porgcoat.2015.09.025
[71] ZHANG Y, TIAN W X, LIU L X, et al. Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings[J]. Chemical Engineering Journal, 2019,372:1077-1090.
doi: 10.1016/j.cej.2019.05.012
[1] 曾凡鑫, 秦宗益, 沈玥莹, 陈园余, 胡铄. 自熄性棉织物的喷涂辅助层层自组装法制备及其阻燃性能[J]. 纺织学报, 2021, 42(01): 103-111.
[2] 马君志, 葛红, 王冬, 付少海. 溶胶-凝胶法改性阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(01): 10-15.
[3] 王琦, 田苗, 苏云, 李俊, 余梦凡, 许霄. 开放/ 封闭空气层对阻燃织物热防护性能的影响[J]. 纺织学报, 2020, 41(12): 54-58.
[4] 肖梦苑, 周新科, 张佳悦, 任元林. 木质素生物质阻燃剂及其应用研究进展[J]. 纺织学报, 2020, 41(12): 182-188.
[5] 杨雅茹, 沈小军, 唐柏林, 牛梅. 超高分子量聚乙烯纤维的无卤阻燃整理[J]. 纺织学报, 2020, 41(11): 109-115.
[6] 刘晓涵, 田苗, 王云仪, 李俊. 阻燃织物老化对其拉伸强力影响的研究进展[J]. 纺织学报, 2020, 41(11): 181-188.
[7] 王阳, 程春祖, 姜丽娜, 任元林, 郭迎宾. 紫外光接枝/溶胶-凝胶技术制备耐久性阻燃腈纶织物[J]. 纺织学报, 2020, 41(10): 107-115.
[8] 许黛芳. 磷酸改性芳纶对聚氨酯硬质泡沫阻燃抑烟性能的影响[J]. 纺织学报, 2020, 41(05): 30-37.
[9] 周青青, 陈嘉毅, 祁珍明, 陈为健, 邵建中. 阻燃抗菌棉织物的制备及其性能表征[J]. 纺织学报, 2020, 41(05): 112-120.
[10] 马君志, 王冬, 付少海. 氧化石墨烯协同二硫代焦磷酸酯阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2020, 41(03): 15-19.
[11] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105.
[12] 党丹旸, 崔灵燕, 王亮, 刘雍. 纤维素纳米纤维/ 纳米蒙脱土复合气凝胶制备及其结构与性能[J]. 纺织学报, 2020, 41(02): 1-6.
[13] 徐爱玲, 王春梅. 植酸的铵化及其对Lyocell 织物的阻燃整理[J]. 纺织学报, 2020, 41(02): 83-88.
[14] 庄群, 张飞, 杜兆芳, 姜华. 改性芳纶与环氧树脂复合体的制备及其防刺性能[J]. 纺织学报, 2019, 40(12): 98-103.
[15] 孙玉发, 周向东. 棉用新型含磷氮阻燃剂的合成及其应用[J]. 纺织学报, 2019, 40(12): 79-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!