纺织学报 ›› 2020, Vol. 41 ›› Issue (02): 1-6.doi: 10.13475/j.fzxb.20190203806

• 纤维材料 •    下一篇

纤维素纳米纤维/纳米蒙脱土复合气凝胶制备及其结构与性能

党丹旸1,2, 崔灵燕1, 王亮1(), 刘雍1   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学 天津市先进纺织复合材料重点实验室, 天津 300387
  • 收稿日期:2019-02-25 修回日期:2019-11-11 出版日期:2020-02-15 发布日期:2020-02-21
  • 通讯作者: 王亮
  • 作者简介:党丹旸(1996—),女,硕士生。主要研究方向为纤维素纳米纤维。
  • 基金资助:
    天津市教委科研计划项目(2017KJ069)

Preparation and properties of cellulose nanofiber/montmorillonite composite aerogels

DANG Danyang1,2, CUI Lingyan1, WANG Liang1(), LIU Yong1   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387,China
    2. Key Laboratory of Tianjin Advanced Textile Composites, Tiangong University, Tianjin 300387, China
  • Received:2019-02-25 Revised:2019-11-11 Online:2020-02-15 Published:2020-02-21
  • Contact: WANG Liang

摘要:

针对纤维素纳米纤维(CNF)气凝胶易燃、强力低等问题,利用纳米蒙脱土(MMT)共混改性纤维素纳米纤维,基于冷冻干燥的方法制备阻燃隔热的CNF/MMT复合气凝胶。研究了MMT质量分数对CNF/MMT复合气凝胶形貌结构、压缩性能、热稳定性、热导率和阻燃性能的影响。结果表明:MMT的引入使气凝胶具有更加紧密的片层结构,气凝胶力学性能、热稳定性和阻燃性能得到改善;在MMT质量分数为50%时,CNF/MMT复合气凝胶的表观密度最大且仅为0.016 8 g/cm3,应变为10%的应力最大为12.45 kPa,应变为70%的应力最大为77.93 kPa,导热系数最大为 0.04 W/(m·K); 气凝胶中MMT质量分数不低于42.9%时,复合基气凝胶的极限氧指数得到明显提升。

关键词: 纤维素纳米纤维, 气凝胶, 蒙脱土, 冷冻干燥法, 阻燃性能

Abstract:

To enhance the flammability and mechanical strength of cellulose nanofiber(CNF) aerogels, nanoscale montmorillonite (MMT) were introduced to CNF suspension, followed by a freeze-drying process to obtain CNF/MMT composite aerogels in this work. The effects of MMT content on the morphology characterization, compressive mechanical properties, thermal stability, thermal conductivity and flame retardancy of CNF/MMT composite aerogels were studied. The results show that the presence of MMT resulted in a denser lamellar structure of aerogels, which improved the mechanical properties, thermal stability and flame retardancy of aerogels. When the mass fraction of MMT is 50%, it is found that the CNF/MMT composite aerogels reaches the maximum density but only as low as 0.016 8 g/cm3, that the maximum stress becomes 12.45 kPa at 10% strain and 77.93 kPa at 70% strain, and that the maximum thermal conductivity is 0.04 W/(m·K). The limiting oxygen index values of CNF/MMT based aerogels shows significant increase when the mass fraction of MMT in aerogels is no less than 42.9%.

Key words: cellulose nanofiber, aerogel, montmorillonite, freeze-drying method, flame retardancy

中图分类号: 

  • TQ342

表1

CNF/MMT复合气凝胶前驱液的组成成分"

样品
编号
纤维素纳米纤
维质量分数/%
蒙脱土质
量分数/%
去离子
水体积/mL
1# 80.0 20.0 150
2# 66.7 33.3 150
3# 57.1 42.9 150
4# 50.0 50.0 150

图1

CNF/MMT复合气凝胶的横截面扫描电镜照片(×200)"

图2

CNF/MMT复合气凝胶的压缩应力-应变曲线"

表2

CNF/MMT复合气凝胶的表观密度和力学性能"

样品编号 密度/(g·cm-3) σ10%/kPa σ70%/kPa E/kPa Es/(kPa·g-1·cm-3)
1# 0.010 8 4.96±0.59 43.16±1.76 79.97±9.86 7 404.63±159.62
2# 0.012 4 5.60±1.14 44.93±3.03 94.49±9.27 7 620.16±139.20
3# 0.013 8 11.61±1.39 61.18±8.55 170.73±12.03 12 371.74±435.26
4# 0.016 8 12.45±1.35 77.93±3.28 165.89±11.79 9 874.40±269.27

图3

CNF/MMT复合气凝胶的热稳定曲线"

表3

CNF/MMT复合气凝胶的热稳定性测试结果"

样品
编号
Td5%/
Tdmax/
热分解速率/
(%·℃-1)
残炭
量/%
1# 259.74 288.57 6.26 38.49
2# 265.89 289.26 4.32 52.81
3# 264.65 288.03 5.10 52.15
4# 262.10 283.50 3.90 62.50
[1] XU X, LIU F, JIANG L, et al. Cellulose nanocrystals vs.cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents[J]. Applied Materials & Interfaces, 2013,5(8):2999-3009.
doi: 10.1021/am302624t pmid: 23521616
[2] JONOBI M, HARUN J, MATHEW A P, et al. Mechanicalproperties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion[J]. Composites Science and Technology, 2010,70:1742-1747.
doi: 10.1016/j.compscitech.2010.07.005
[3] SULAIMAN S, CIEH N L, MOKHTAR M N, et al. Covalentimmobilization of cyclodextrin glucanotranferase on kenaf cellulose nanofiber and its application in ultrafiltration membrane system[J]. Process Biochemistry, 2017,55:85-95.
doi: 10.1016/j.procbio.2017.01.025
[4] KORHONEN J T, KETTUNEN M, RAS R H, et al. Hydrophobicnanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absor-bents[J]. Acs Applied Materials & Interfaces, 2011,3(6):1813-1816.
doi: 10.1021/am200475b pmid: 21627309
[5] ZHAO J Q, LU C H, HE X, et al. Polyethylenimine-grafted cellulose nanofibril aerogels as versatile vehicles for drug delivery[J]. Acs Appl Mater Interfaces, 2015,7(4):2607-2615.
doi: 10.1021/am507601m pmid: 25562313
[6] XIONG R, LU C H, WANG Y R, et al. Nanofibrillated cellulose as the support and reductant for the facile synjournal of Fe3O4/Ag nanocomposites with catalytic and antibacterial activity[J]. Journal of Materials Chemistry A, 2013(47):14910-14918.
doi: 10.1039/c3ta13314a
[7] WU Q, ANDERSSON R, HOLGATE T, et al. Highly porous flame-retardant and sustainable biofoams based on wheat gluten and in situ polymerized silica[J]. Journal of Materials Chemistry A, 2014(48):20996-21009.
doi: 10.1039/c4ta04787g
[8] HAN Y Y, ZHANG X X, WU X D, et al. Flame retardant, heat insulating cellulose aerogels from waste cotton fabrics by in situ formation of magnesium hydroxide nanoparticles in cellulose gel nanostruc-tures[J]. Acs Sustainable Chemistry & Engineering, 2015,3(8):1853-1859.
[9] WANG Y, GAWRYLA M D, SCHIRALDI D A. Effects of freezing conditions on the morphology and mechanical properties of clay and polymer/clay aerogels[J]. Journal of Applied Polymer Science, 2013,129:1637-1641.
doi: 10.1002/app.39143
[10] 徐春霞, 降帅, 韩阜益, 等. 纤维素纳米纤丝气凝胶制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2019,40(10):20-25.
XU Chunxia, JIANG Shuai, HAN Fuyi, et al. Preparation of cellulose nanofibrils aerogel and its adsorption of methylene blue[J]. Journal of Textile Research, 2019,40(10):20-25.
[11] 朱晓琪. PBAT/有机蒙脱土纳米复合材料的制备及性能研究[D]. 株洲: 湖南工业大学, 2015: 47-57.
ZHU Xiaoqi. Preparation and properties of PBAT/organic montmorillonite nanocomposites[D]. Zhuzhou: Hunan University of Technology, 2015: 47-57.
[12] WANG L, SANCHEZ-SOTO M, ABT T. Properties of bio-based gum Arabic/clay aerogels[J]. Industrial Crops & Products, 2016,91:15-21.
[13] NGUYEN S T, FENG J, SHAO K N, et al. Advanced thermal insulation and absorption properties of recycled cellulose aerogels[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2014,445:128-134.
[14] SHI J J, LU L B, GUO W T, et al. An environment-friendly thermal insulation material from cellulose and plasma modification[J]. Journal of Applied Polymer Science, 2014,130:3652-3658.
[15] 白小元, 车德勇, 蒋文强, 等. 纤维素热解的TG-FTIR分析[J]. 可再生能源, 2015(33):1582-1588.
BAI Xiaoyuan, CHE Deyong, JIANG Wenqiang, et al. TG-FTIR analysis of cellulose pyrolysis[J]. Renewable Energy, 2015 (33):1582-1588.
[16] 徐卫兵, 戈明亮, 何平笙. 聚丙烯/蒙脱土纳米复合材料的制备与性能[J]. 中国塑料, 2000(11):27-31.
XU Weibing, GE Mingliang, HE Pingsheng. Preparation and properties of polypropylene/montmorillonite nanocomposites[J]. China Plastics, 2000 ( 11):27-31.
[17] SONG Z Y, HONG X X, ZHANG L Q, et al. Enhancing crystallinity and orientation by hot-stretching to improve the mechanical properties of electrospun partially aligned polyacrylonitrile(PAN) nanocom-posites[J]. Materials, 2011,4:621-632.
doi: 10.3390/ma4040621 pmid: 28879944
[18] 李博, 刘岚, 罗鸿鑫, 等. 有机蒙脱土/天然橡胶纳米复合材料的阻燃性能研究[J]. 高分子学报, 2007(1):456-461.
LI Bo, LIU Lan, LUO Hongxin, et al. Flame retardant properties of organic montmorillonite/natural rubber nanocomposites[J]. Journal of Polymer, 2007 ( 1):456-461.
[1] 何雪梅, 冒海燕, 蔡露. 壳聚糖基杂化气凝胶对活性染料的吸附性能[J]. 纺织学报, 2021, 42(02): 148-155.
[2] 曾凡鑫, 秦宗益, 沈玥莹, 陈园余, 胡铄. 自熄性棉织物的喷涂辅助层层自组装法制备及其阻燃性能[J]. 纺织学报, 2021, 42(01): 103-111.
[3] 马君志, 葛红, 王冬, 付少海. 溶胶-凝胶法改性阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(01): 10-15.
[4] 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121.
[5] 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26.
[6] 许黛芳. 磷酸改性芳纶对聚氨酯硬质泡沫阻燃抑烟性能的影响[J]. 纺织学报, 2020, 41(05): 30-37.
[7] 高珊, 卢业虎, 张德锁, 吴雷, 王来力. 石墨烯气凝胶复合防火织物的热防护性能[J]. 纺织学报, 2020, 41(04): 117-122.
[8] 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14.
[9] 王世贤, 降帅, 李萌萌, 刘丽芳, 张丽. 硅烷偶联剂改性纳米纤维素气凝胶的制备及其表征[J]. 纺织学报, 2020, 41(03): 33-38.
[10] 徐春霞, 降帅, 韩阜益, 徐芳, 刘丽芳. 纤维素纳米纤丝气凝胶制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2019, 40(10): 20-25.
[11] 王璐, 丁笑君, 夏馨, 王虹, 周小红. SiO2气凝胶/芳纶非织造布复合织物的防护功能[J]. 纺织学报, 2019, 40(10): 79-84.
[12] 盛宇, 徐丽慧, 孟云, 沈勇, 王黎明, 潘虹. 用SiO2/TiO2复合气凝胶制备超疏水光催化防紫外线织物[J]. 纺织学报, 2019, 40(07): 90-96.
[13] 莫达杰, 李旭明, 许增慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸阻燃纤维的制备及其性能[J]. 纺织学报, 2019, 40(05): 12-17.
[14] 张安莹, 王照颖, 王锐, 董振峰, 魏丽菲, 王德义. 阻燃聚左旋乳酸及其纤维的制备与结构性能[J]. 纺织学报, 2019, 40(04): 7-14.
[15] 赵青华, 毛秦岑, 梅涛, 牛应买, 王栋. 阻燃剂对聚氯乙烯/聚酯复合材料性能的影响[J]. 纺织学报, 2019, 40(01): 103-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!