纺织学报 ›› 2020, Vol. 41 ›› Issue (11): 10-18.doi: 10.13475/j.fzxb.20191106709

• 纤维材料 • 上一篇    下一篇

基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能

王子希1,2, 胡毅1,2()   

  1. 1.浙江理工大学 先进纺织材料与制备技术教育部重点实验室, 浙江 杭州 310018
    2.浙江理工大学 生态染整技术教育部工程研究中心, 浙江 杭州 310018
  • 收稿日期:2019-11-28 修回日期:2020-07-11 出版日期:2020-11-15 发布日期:2020-11-26
  • 通讯作者: 胡毅
  • 作者简介:王子希(1997—),男。主要研究方向为碳纳米纤维的储能研究。
  • 基金资助:
    浙江省自然科学基金项目(LY17E030008);浙江省自然科学基金项目(LY12E03005);浙江理工大学基本科研业务费专项资金资助项目(2020Y001)

Preparation and energy storage of porous carbon nanofibers based on ZnCo2O4

WANG Zixi1,2, HU Yi1,2()   

  1. 1. Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Engineering Research Center for Eco-Dyeing & Finishing of Textiles,Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2019-11-28 Revised:2020-07-11 Online:2020-11-15 Published:2020-11-26
  • Contact: HU Yi

摘要:

针对锂硫电池循环过程中容量衰减快的问题,采用水热法制备ZnCo2O4纳米颗粒,然后与聚丙烯腈(PAN)混合,通过静电纺丝法制备复合纳米纤维并进行炭化处理得到复合多孔碳纳米纤维。借助扫描电子显微镜、透射电子显微镜、X射线光电子能谱仪、拉曼光谱仪、比表面积测试仪表征复合多孔碳纳米纤维的微观结构和物化性能,优化得到最佳制备工艺;并将其作为正极硫载体测试电化学性能。结果表明:基于ZnCo2O4制备的复合多孔碳纳米纤维存在大量孔孔相连的通道,比表面积高达210.85 m2/g;组装成的锂硫电池具有典型的充放电平台以及明显的氧化还原峰,其初始放电比容量为759.2 mA·h/g,50圈充放电循环后,仍具有74.0%的可逆比容量,相比于不掺杂ZnCo2O4的静电纺丝碳纳米纤维具有更高的比容量,更好的倍率性能。

关键词: 碳纳米纤维, 静电纺丝, 锂硫电池, 储能性能

Abstract:

Aiming at the problem of rapid capacity decay during the cycling of lithium-sulfur batteries, ZnCo2O4 nanoparticles were prepared by a hydrothermal method, and the nanoparticles were mixed with polyacrylonitrile to prepare composite nanofibers by electrostatic spinning followed by carbonization. Scanning electron microscope, transmission electron microscope, X-ray photoelectron spectroscopy, raman spectroscopy, and specific surface area measurements were used to characterize the microstructure and physical and chemical properties of the composite porous carbon nanofibers. The optimal preparation process was identified, and the porous carbon nanofibers were used as the positive sulfur carrier to test its electrochemical performance. The results show that the composite porous carbon nanofibers prepared based on ZnCo2O4 has a large number of channels connected by pores, and the specific surface area is as high as 210.85 m2/g. The assembled lithium-sulfur battery has a typical charge-discharge platform and a significant oxygen reduction peak. An initial discharge specific capacity of 759.2 mA·h/g is achieved, and it still has a reversible specific capacity of 74.0% after 50 charge-discharge cycles. Compared with electrospinning carbon nanofibers without ZnCo2O4 doping, the porous carbon nanofibres has better specific capacity and higher rate performance.

Key words: carbon nanofiber, electrospinning, lithium-sulfur battery, energy storage

中图分类号: 

  • TS102

图1

ZCO纳米颗粒样品的扫描电镜照片和XRD曲线"

图2

不同ZCO和PAN质量比多孔碳纳米纤维的扫描电镜照片"

图3

不同炭化温度下ZCO/PAN多孔碳纳米纤维的扫描电镜照片"

图4

ZCO/PAN多孔碳纳米纤维的透射电镜照片"

图5

不同ZCO与PAN质量比多孔碳纳米纤维的拉曼光谱图"

图6

不同炭化温度下ZCO/PAN多孔碳纳米纤维的EDS元素谱图"

表1

不同炭化温度下ZCO/PAN多孔碳纳米纤维中Zn、Co元素的含量"

炭化温度/℃ Co含量/% Zn含量/%
400 2.70 1.30
500 2.83 1.93
600 3.74 2.58
700 8.69 0
800 11.82 0

图7

ZCO/PAN多孔碳纳米纤维的扫描电镜照片及表面元素分布照片"

图8

ZCO/PAN多孔碳纳米纤维的XPS谱图"

图9

ZCO/PAN多孔碳纳米纤维的氮气吸附/脱附曲线和孔径分布图"

图10

ZCO/PAN/S的热重曲线和XRD曲线"

图11

ZCO/PAN/S复合正极锂硫电池的电化学性能"

[1] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2014,7(1):19-29.
doi: 10.1038/nchem.2085 pmid: 25515886
[2] LI G, WANG S, ZHANG Y, et al. Revisiting the role of polysulfides in lithium-sulfur batteries[J]. Advanced Materials, 2018,30(22):1705590.
[3] ZHAO T, YE Y, PENG X, et al. Advanced lithium-sulfur batteries enabled by a bio-inspired polysulfide adsorptive brush[J]. Advanced Functional Materials, 2016,26(46):8418-8426.
[4] CHIOCHAN Poramane, KOSASANG Soracha, MA Nattapol, et al. Confining Li2S6 catholyte in 3D graphene sponge with ultrahigh total pore volume and oxygen-containing groups for lithium-sulfur batteries[J]. Carbon, 2020,158(C):244-255.
[5] DONG Y, LU P, SHI H, et al. 2D hierarchical yolk-shell heterostructures as advanced host-interlayer integrated electrode for enhanced Li-S batteries[J]. Journal of Energy Chemistry, 2019,36:64-73.
[6] 陈悦, 赵永欢, 褚朱丹, 等. 基于碳纤维及织物的柔性锂电池电极研究进展[J]. 纺织学报, 2019,40(2):173-180.
CHEN Yue, ZHAO Yonghuan, CHU Zhudan, et al. Research progress of flexible lithium battery electodes based on carbon fibers and their fabrics[J]. Journal of Textile Research, 2019,40(2):173-180.
[7] ZHANG J, HUANG M, XI B, et al. Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium-sulfur batteries[J]. Advanced Energy Materials, 2018(2):1701330.
[8] ZHONG Y, XIA X, DENG S, et al. Popcorn inspired porous macrocellular carbon: rapid puffing fabrication from rice and its applications in lithium-sulfur batteries[J]. Advanced Energy Materials, 2018,8(1):1701110.
doi: 10.1002/aenm.v8.1
[9] 张强, 程新兵, 黄佳琦, 等. 碳质材料在锂硫电池中的应用研究进展[J]. 新型炭材料, 2014,29(4):241-264.
ZHANG Qiang, CHENG Xinbing, HUANG Jiaqi, et al. Review of carbon materials for advanced lithium-sulfur batteries[J]. New Carbon Materials, 2014,29(4):241-264.
[10] AHMAD Amiri, BRYAN Conlee, IAN Tallerine, et al. A novel path towards synjournal of nitrogen-rich porous carbon nanofibers for high performance supercapaci-tors[J]. Chemical Engineering Journal, 2020,399:125778.
doi: 10.1016/j.cej.2020.125778
[11] ZHAO X, KIM M, LIU Y, et al. Root-like porous carbon nanofibers with high sulfur loading enabling superior areal capacity of lithium sulfur batteries[J]. Carbon, 2018,128:138-146.
[12] CAO Z, WANG C, CHEN J. Novel mesoporous carbon nanofibers prepared via electrospinning method as host materials for Li-S battery[J]. Materials Letters, 2018,225:157-160.
doi: 10.1016/j.matlet.2018.05.007
[13] 刘北元, 谢朝香, 崔志兴, 等. 氮掺杂多孔碳纤维改性锂硫电池正极材料[J]. 上海航天, 2020,37(2):69-74.
LIU Beiyuan, XIE Chaoxiang, CUI Zhixing, et al. Nitrogen-doped porous carbon fiber modified lithium-sulfur battery cathode material.[J]. Aerospace Shanghai, 2020,37(2):69-74.
[14] TU S, CHEN X, ZHAO X, et al. A polysulfide-immobilizing polymer retards the shuttling of polysulfide intermediates in lithium-sulfur batteries[J]. Advanced Materials, 2018,30(45):1804581.
[15] WU K, HU Y, SHEN Z, et al. Highly efficient and green fabrication of a modified C nanofiber interlayer for high-performance Li-S batteries[J]. Journal of Materials Chemistry A, 2018. DOI: 10.1039.C7TA09641K.
doi: 10.1039/C7TA00635G pmid: 29170714
[16] REN W, MA W, UMAIR M M, et al. CoO/Co-activated porous carbon cloth cathode for high performance Li-S batteries[J]. Chem Sus Chem, 2018,11(16):2695-2702.
[17] PARVES K, WU Z S, LI R, et al. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts[J]. Journal of the American Chemical Society, 2014,136(16):6083-6091.
pmid: 24684678
[18] CHEN R, HU Y, SHEN Z, et al. Highly mesoporous C nanofibers with graphitized pore walls fabricated via ZnCo2O4-induced activating-catalyzed-graphitization for long-lifespan lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017,5(41):21679-21687.
[19] ZHANG M, YU C, ZHAO C, et al. Cobalt-embedded nitrogen-doped hollow carbon nanorods for synergistically immobilizing the discharge products in lithium-sulfur battery[J]. Energy Storage Materials, 2016,5:223-229.
[20] BAI S, LIU X, ZHU K, et al. Metal-organic framework-based separator for lithium-sulfur batteries[J]. Nature Energy, 2016,1(7):16094.
[1] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[2] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[3] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[4] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[5] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[6] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/ FeCl3 复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20.
[7] 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26.
[8] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[9] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[10] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[11] 方舟, 宋磊磊, 孙保金, 李文肖, 张超, 闫俊, 陈磊. 碳纳米纤维结构设计及其对水污染物吸附机制的研究进展[J]. 纺织学报, 2020, 41(08): 135-144.
[12] 吴红, 刘呈坤, 毛雪, 阳智, 陈美玉. 柔性ZrO2纳米纤维膜的制备及其应用研究现状[J]. 纺织学报, 2020, 41(07): 167-173.
[13] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[14] 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/ 聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26.
[15] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!