纺织学报 ›› 2021, Vol. 42 ›› Issue (04): 1-7.doi: 10.13475/j.fzxb.20200908307

• 特约专栏:生物基聚酯和聚酰胺纤维 •    下一篇

生物基聚酰胺56纤维的热降解动力学及其热解产物

杨婷婷1,2, 高远博1,2, 郑毅3, 王学利4, 何勇1,2,4()   

  1. 1.东华大学 材料科学与工程学院, 上海 201620
    2.东华大学 纤维材料改性国家重点实验室, 上海 201620
    3.上海凯赛生物技术股份有限公司, 上海 201203
    4.东华大学 纺织科技创新中心, 上海 201620
  • 收稿日期:2020-09-30 修回日期:2020-12-23 出版日期:2021-04-15 发布日期:2021-04-20
  • 通讯作者: 何勇
  • 作者简介:杨婷婷(1995—),女,博士生。主要研究方向为生物基聚酰胺聚合与成形动力学机制。
  • 基金资助:
    国家重点研发计划资助项目(2017YFB0309400)

Thermal degradation kinetics and pyrolysis products of bio-based polyamide 56 fiber

YANG Tingting1,2, GAO Yuanbo1,2, ZHENG Yi3, WANG Xueli4, HE Yong1,2,4()   

  1. 1. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    2. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
    3. Cathay Biotech Inc., Shanghai 201203, China
    4. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2020-09-30 Revised:2020-12-23 Online:2021-04-15 Published:2021-04-20
  • Contact: HE Yong

摘要:

生物基聚酰胺56(PA56)纤维是由生物基1,5-戊二胺和石油基1,6-己二酸聚合制备而成的新型生物基材料。为探究生物基PA56纤维的热稳定性,分别在氮气氛围中测定其在不同升温速率下的热降解过程,并计算其热降解动力学参数,同时分析了生物基PA56纤维在热降解过程中的主要热降解气相产物。结果表明:生物基PA56纤维的热失重曲线及热降解动力学参数对升温速率具有显著依赖性,采用Kissinger法、Flynn-Wall-Ozawa法和Coasts-Redfern法获得的生物基PA56纤维的活化能分别为235.00、217.23和232.18 kJ/mol,可推测其热降解机制为F1型,热降解过程中产生的主要气相产物为CO2、环戊酮和1,5-戊二胺。

关键词: 生物基聚酰胺56纤维, 热稳定性, 热降解动力学, 热降解动力学参数, 热解气相产物

Abstract:

Bio-based polyamide 56 (PA56) fiber was prepared by bio-based 1,5-pentanediamine and petroleum-based 1,6-adipic acid. In order to explore the thermal stability of the new type of bio-based material, the thermal degradation process of the bio-based PA56 fiber were measured under nitrogen at different heating rates, and the thermal degradation kinetic parameters were calculated. In addition, the main pyrolysis gas phase products of bio-based PA56 fiber in the thermal degradation process were analyzed. The results show that the thermal weight loss curve and kinetic parameters of bio-based polyamide 56 fiber are dependent on the heating rates. The activation energy of bio-based PA56 fiber obtained by Kissinger method, Flynn-Wall-Ozawa method and Coasts-Redfern method are 235.00, 217.23 and 232.18 kJ/mol, respectively, suggesting that the thermal degradation mechanism is F1 type. The main pyrolysis gas phase products are CO2, cyclopentanone and 1,5-pentanediamine in the thermal degradation process.

Key words: bio-based polyamide 56 fiber, thermal stability, thermal degradation kinetics, thermal degradation kinetic parameter, pyrolysis gas phase product

中图分类号: 

  • TS151

图1

不同升温速率下生物基PA56纤维在氮气气氛中的热重曲线"

图2

Kissinger法拟合的ln(β/T2)与1/T关系曲线"

表1

Kissinger法计算得到的活化能及相关系数"

β/(℃·min-1) T/℃ E/(kJ·mol-1) lnA 相关系数R
10 441.0 235.00 32.01 0.994
15 450.4
20 455.0
25 458.2

图3

Flynn-Wall-Ozawa法拟合的lgβ与1 000/T关系曲线"

表2

Flynn-Wall-Ozawa法计算得到的活化能"

质量损失率α 斜率 活化能/
(kJ·mol-1)
活化能平均值/
(kJ·mol-1)
0.1 -10.69 194.51 217.23
0.2 -11.77 214.16
0.3 -12.57 228.72
0.4 -12.70 231.09
0.5 -12.45 226.54
0.6 -12.25 222.90
0.7 -12.08 219.81
0.8 -11.76 213.98
0.9 -11.01 200.34

图4

Coasts-Redfern法拟合的ln(g(α)/T2)与1 000/T关系曲线"

表3

Coasts-Redfern法计算得到的活化能及相关系数"

动力学机制
类型
g(α) 10 ℃/min 15 ℃/min 20 ℃/min 25 ℃/min
E/(kJ·mol-1) R E/(kJ·mol-1) R E/(kJ·mol-1) R E/(kJ·mol-1) R
A2 (-ln(1-α))12 123.96 0.999 126.61 0.700 116.94 0.997 129.98 0.998
A3 (-ln(1-α))13 86.55 0.999 87.33 0.510 81.95 0.998 90.67 0.998
A4 (-ln(1-α))14 67.85 0.999 67.69 0.364 64.45 0.998 70.01 0.999
R1 α 173.69 0.977 178.22 0.839 162.36 0.960 181.50 0.967
R2 1-(1-α)12 201.87 0.993 208.07 0.876 189.17 0.983 211.43 0.987
R3 1-(1-α)13 212.60 0.996 219.45 0.886 199.40 0.989 222.83 0.992
D1 α2 335.64 0.975 347.67 0.941 312.75 0.957 350.98 0.964
D2 (1-α)ln(1-α)+α 369.84 0.987 383.89 0.956 345.25 0.973 387.26 0.978
D3 (1-(1-α)13)2 413.46 0.996 430.14 0.967 386.84 0.988 433.64 0.991
D4 1-23α-(1-α)23 384.18 0.991 402.21 0.985 358.91 0.979 402.50 0.984
F1 -ln(1-α) 236.19 0.999 222.66 0.999 221.92 0.997 247.93 0.998
F2 1/(1-α) 161.90 0.838 170.21 0.854 155.44 0.873 171.88 0.858
F3 1/(1-α)2 312.08 0.828 330.53 0.845 298.91 0.865 331.74 0.849

图5

生物基PA56纤维在氮气氛围下的三维 TG-IR谱图"

图6

不同温度下生物基PA56纤维热解气相产物的红外光谱图"

图7

生物基PA56纤维主要热解气相产物吸光度随温度的变化"

图8

不同热解温度下PA56的 Py-GC/MS谱图"

表4

不同热解温度下PA56的热解挥发物对照表"

物质
编号
热解气相产物 m/z 不同温度时的相对含量
455 ℃ 500 ℃ 550 ℃
1 CO2 44 11.96 25.35 29.33
吡啶 79 0.35
2 氨基环戊烷 85 0.36
环戊烯 68 1.31
3 环戊酮 84 46.60 40.97 38.78
4 四氢吡啶 83 4.75 7.29
5 1,5-戊二胺 102 25.48 8.58 3.40
6 1H-吲哚-3-甲醛 159 0.74 0.53 0.45
7 7-羟基-1-氮杂环烷-2-酮 185 3.21 4.47 6.13
[1] 胡紫东. 具有创新性和成本竞争力的纺织用生物基聚酰胺[J]. 国际纺织导报, 2016,44(5):12-14.
HU Zidong. Innovative, cost-competitive, bio-based polyamide for textiles[J]. Melliand China, 2016,44(5):12-14.
[2] VYAZOVKIN S, BURNHAM A K, CRIADO J M, et al. Ictac kinetics committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica, 2011,520(1/2):1-19.
[3] KISSINGER H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957,29(11):1702-1706.
[4] OZAWA T. A new method of analyzing thermogravimetric data[J]. Bulletin of the Chemical Society of Japan, 1965,38(11):1881-1886.
[5] SENGUPTA R, SABHARWAL S, BHOWMICK A K, et al. Thermogravimetric studies on polyamide-6,6 modified by electron beam irradiation and by nanofillers[J]. Polymer Degradation and Stability, 2006,91(6):1311-1318.
[6] KUNDU C K, YU B, GANGIREDDY C S R, et al. UV grafting of a dopo-based phosphoramidate monomer onto polyamide 66 fabrics for flame retardant treatment[J]. Industrial & Engineering Chemistry Research, 2017,56(6):1376-1384.
[7] DUEMICHEN E, BRAUN U, STURM H, et al. A new molecular understanding of the thermal degradation of PA66 doped with metal oxides: experiment and computation[J]. Polymer Degradation and Stability, 2015,120:340-356.
[8] 张腾飞, 石禄丹, 胡红梅, 等. 生物基聚酰胺56低聚物改性聚酯的合成及其表征[J]. 纺织学报, 2019,40(6):1-7.
ZHANG Tengfei, SHI Ludan, HU Hongmei, et al. Synjournal and characterization of bio-based polyamide 56 oligomer modified polyester[J]. Journal of Textile Research, 2019,40(6):1-7.
[9] 董奎勇, 杨婷婷, 王学利, 等. 生物基聚酯与聚酰胺纤维的研发进展[J]. 纺织学报, 2020,40(1):174-183.
DONG Kuiyong, YANG Tingting, WANG Xueli, et al. Research and development progress of bio-based polyester and polyamide fibers[J]. Journal of Textile Research, 2020,40(1):174-183.
[10] 潘伟楠, 相恒学, 翟功勋, 等. 共聚酰胺6/66相对分子质量对其结晶和流变性能的影响[J]. 纺织学报, 2019,40(9):8-14.
PAN Weinan, XIANG Hengxue, ZHAI Gongxun, et al. Influence of relative molecular weight of copolyamide 6/66 on crystallization and rheological properties thereof[J]. Journal of Textile Research, 2019,40(9):8-14.
[1] 孙朝续, 刘修才. 生物基聚酰胺56纤维在纺织领域的应用研究进展[J]. 纺织学报, 2021, 42(04): 26-32.
[2] 温馨, 张须臻, 李勇, 黄文健, 卢晨. 水引发L-丙交酯开环聚合工艺研究[J]. 纺织学报, 2020, 41(12): 21-25.
[3] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[4] 朱维维, 蔡冲, 张聪, 龙家杰, 施楣梧. 超临界CO2处理温度对二醋酸纤维结构与性能的影响[J]. 纺织学报, 2020, 41(03): 8-14.
[5] 崔一帆, 侯巍, 周千熙, 闫俊, 路艳华, 何婷婷. 丝胶温敏凝胶对棉织物性能的影响[J]. 纺织学报, 2019, 40(12): 74-78.
[6] 林启松 江力 汪凯 张顺花. 新型改性聚酯的制备及其性能[J]. 纺织学报, 2018, 39(08): 22-26.
[7] 贾丽霞 金崇业 刘瑞 单国华. 硅磷杂化阻燃整理对羊毛结构与热稳定性能的影响[J]. 纺织学报, 2017, 38(12): 101-105.
[8] 刘鹏雷 姜鹏飞 刘燕军 郑帼. 纺丝油剂中脂肪酸酯类平滑剂的抗氧化及热稳定性[J]. 纺织学报, 2017, 38(04): 68-72.
[9] 毛雪峰 钱杨 蒋佳莉 周邓飞 么丹阳 王秀华. 低熔点聚酰胺的制备与性能[J]. 纺织学报, 2016, 37(3): 6-10.
[10] 冯倩倩 朱方龙 信群 陈萌. 膨胀型阻燃棉织物的热降解动力学[J]. 纺织学报, 2016, 37(12): 81-86.
[11] 郭丽 戴伟东 朱荫 张悦 林智. 酯型儿茶素的热稳定性及其上染蚕丝效果[J]. 纺织学报, 2016, 37(09): 90-93.
[12] 张静静 王颖 宋丹 国凤敏 陈超. 聚对苯二甲酸乙二醇酯与聚对苯二甲酸丁二醇酯的热分解性能[J]. 纺织学报, 2016, 37(07): 34-38.
[13] 王世超 相恒学 费海燕 冯琦云 朱美芳. 低聚物含量对聚乳酸熔纺成形工艺的影响[J]. 纺织学报, 2014, 35(8): 133-0.
[14] 李涛 张涛 张开瑞 王潮霞. 紫外线辐照对棉纤维结构与性能的影响[J]. 纺织学报, 2014, 35(3): 52-0.
[15] 陈莹 李永霞 唐劲天 周蓉. 聚吡咯/涤纶单丝的稳定性分析[J]. 纺织学报, 2014, 35(11): 1-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!