纺织学报 ›› 2022, Vol. 43 ›› Issue (01): 9-14.doi: 10.13475/j.fzxb.20210909606

• 纤维材料 • 上一篇    下一篇

基于对羟基苯丙酸的生物基液晶共聚酯纤维的合成与性能

李龙龙1, 魏朋1,2(), 吴萃霞1, 闫金飞1, 娄贺娟1, 张一风1,2, 夏于旻3, 王燕萍3, 王依民3   

  1. 1.中原工学院 纺织学院, 河南 郑州 450007
    2.纺织服装产业河南省协同创新中心, 河南 郑州 450007
    3.东华大学 材料科学与工程学院, 上海 201620
  • 收稿日期:2021-09-27 修回日期:2021-11-02 出版日期:2022-01-15 发布日期:2022-01-28
  • 通讯作者: 魏朋
  • 作者简介:李龙龙(1997—),男,硕士生。主要研究方向为生物基液晶高分子纤维。
  • 基金资助:
    国家自然科学基金项目(51803246);河南省高校科技创新人才支持计划资助项目(22HASTIT032);河南省高等学校青年骨干教师培养计划项目(2020GGJS140);中原工学院基本科研业务费专项资金资助项目(K2020YY005)

Synthesis and properties of bio-based liquid crystal copolyester fiber based on p-hydroxyphenyl propionic acid

LI Longlong1, WEI Peng1,2(), WU Cuixia1, YAN Jinfei1, LOU Hejuan1, ZHANG Yifeng1,2, XIA Yumin3, WANG Yanping3, WANG Yimin3   

  1. 1. College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
    2. Henan Collaborative Innovation Center of Textile and Garment Industry, Zhengzhou, Henan 450007, China
    3. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
  • Received:2021-09-27 Revised:2021-11-02 Published:2022-01-15 Online:2022-01-28
  • Contact: WEI Peng

摘要:

针对常规生物基纤维力学性能与耐热性不足的问题,以6-羟基-2-萘甲酸、对羟基苯甲酸和对羟基苯丙酸(HPPA)为原料,采用一锅熔融聚合法合成了生物基液晶共聚酯,并通过熔融纺丝制备得到初生纤维,对共聚酯及其初生纤维的结构与性能进行研究。结果表明:制备得到的生物基液晶共聚酯为向列型液晶,其熔点在200 ℃左右,并随着HPPA添加量的增加而降低,而高HPPA添加量会导致共聚酯熔融行为不明显,不利于结晶;共聚酯具有良好的热稳定性,其质量损失5%时对应的温度高于370 ℃,在700 ℃时的残炭率大于30%;共聚酯初生纤维表面光滑均匀,断面具有明显的原纤结构,力学性能较好,并与HPPA的添加量呈负相关关系。

关键词: 生物基液晶高分子, 熔融聚合, 熔融纺丝, 对羟基苯丙酸, 生物基纤维, 对羟基苯丙酸, 共聚酯纤维

Abstract:

In order to improve the mechanical property and thermal stability of bio-based polymers, the bio-based liquid crystal copolyester derived from 6-hydroxy-2-naphthenic acid, p-hydroxybenzoic acid and p-hydroxyphenyl propionic acid(HPPA) were studied and successfully synthesized via the one-pot melt polymerization method, and the structures and properties of the spun fibers from the bio-based liquid crystal copolyesters were prepared by melt spinning. The results show that the prepared bio-based liquid crystal copolyester is a nematic liquid crystal polymer. Its melting point is around 200 ℃, and it decreases with the increase of HPPA monomer content. High content of HPPA leads to weak melting behavior, which is not conducive to crystallization. The copolyesters show good thermal stability and high char yield, and the temperature corresponded to 5% weight loss and char yield at 700 ℃ are above 370 ℃ and 30%, respectively. The surface of the as spun copolyester fiber is smooth and uniform, the cross section has an obvious fibrillar structure. The fibers have good mechanical properties, which are negatively related to the content of HPPA.

Key words: bio-based liquid crystal polymer, melt polymerization, melt spinning, p-hydroxyphenyl propionic acid, bio-based fiber, p-hydroxybenzoic acid, copolyester fiber

中图分类号: 

  • O632

表1

生物基液晶共聚酯的组成"

样品编号 HNA摩尔分数 HBA摩尔分数 HPPA摩尔分数
LCPH1 30 40 30
LCPH2 30 30 40
LCPH3 30 20 50

图1

生物基液晶共聚酯的反应路线 注:x、y、z代表对应摩尔分数。"

图2

共聚酯LCPH2的红外光谱图"

图3

共聚酯的第2次DSC升温曲线"

图4

共聚酯的TGA和DTG曲线"

表2

共聚酯的热稳定性测试结果"

样品编号 初始降解
温度/℃
最大质量损失速率
对应的温度/℃
残炭量/%
LCPH1 371 409 30
LCPH2 377 412 34
LCPH3 376 414 36

图5

共聚酯LCPH2的偏光图像(×400)"

图6

共聚酯的X射线衍射图"

图7

共聚酯LCPH2动态流变行为和表观黏度曲线"

图8

共聚酯纤维的表面和断面形貌(×200)"

图9

共聚酯纤维的拉伸应变-应力曲线"

表3

共聚酯纤维的力学性能"

样品
编号
直径/μm 断裂强度/
GPa
弹性模量/
GPa
断裂应变/
%
LCPH1 76.88±18.07 0.35±0.04 20.80±5.76 2.62±0.47
LCPH2 146.78±12.69 0.26±0.01 13.55±1.67 2.66±0.67
LCPH3 126.99±4.78 0.19±0.02 11.46±1.18 2.00±0.36
[1] 郭姝, 邹涛, 康海澜, 等. 生物基异山梨醇聚酯的合成与性能表征[J]. 材料导报, 2018, 32(S2): 64-68.
GUO Shu, ZOU Tao, KANG Hailan, et al. Preparation and characterization of biobased copolyester containing isosorbide[J]. Materials Reports, 2008, 32(S2): 64-68.
[2] YU Long, DEAN Katherine, LI Lin. Polymer blends and composites from renewable resources[J]. Progress in Polymer Science, 2006, 31(6): 576-602.
doi: 10.1016/j.progpolymsci.2006.03.002
[3] 任静娇, 东为富, 施冬健, 等. 全生物基脂肪/芳香族不饱和共聚酯的合成及其性能研究[J]. 石油化工, 2012, 41(3): 330-334.
REN Jingjiao, DONG Weifu, SHI Dongjian, et al. Synjournal and properties of bio-based alkyl/aromatic unsaturated co-polyester[J]. Petrochemical Technology, 2012, 41(3): 330-334.
[4] THI T H, MATSUSAKI M, SHI D, et al. Synjournal and properties of coumaric acid derivative homo-polymers[J]. J Biomater Sci Polym Ed, 2008, 19(1): 75-85.
doi: 10.1163/156856208783227668
[5] KANEKO T, THI T H, SHI D J, et al. Environmentally degradable, high-performance thermoplastics from phenolic phytomonomers[J]. Nat Mater, 2006, 5(12): 966-970.
doi: 10.1038/nmat1778
[6] PICKEN S J, SIKKEMA D J, BOERSTOEL H, et al. Liquid crystal main-chain polymers for high-performance fibre applications[J]. Liquid Crystals, 2011, 38(11/12): 1591-1605.
doi: 10.1080/02678292.2011.624367
[7] HATUI G, SAHOO S, KUMAR D C, et al. Effect of nanosilica and polyphosphazene elastomer on the in situ fibrillation of liquid crystalline polymer (LCP) and thermo-mechanical properties of polybutylene terephthalate (PBT)/LCP blend system[J]. Materials & Design, 2012, 42:184-191.
doi: 10.1016/j.matdes.2012.05.052
[8] JAPE S P, DESHPANDE V D, Investigation into the morphology, crystallization and melting behaviour of nylon 6,6/LCP blends[J]. Journal of Thermal Analysis and Calorimetry, 2018, 136(3): 1103-1116.
doi: 10.1007/s10973-018-7733-6
[9] WEI Peng, WANG Li, HUANG Shuohan, et al. Synjournal and characterization of novel thermotropic aromatic-aliphatic biodegradable copolyesters containing D,L-lactic acid (LA), poly butylene terephthalate (PBT) and biomesogenic units[J]. Polymer-Plastics Technology and Engineering, 2014, 53(16): 1697-1705.
doi: 10.1080/03602559.2014.919655
[10] DU Jie, FANG Yuanyuan, ZHENG Yubin. Synjournal, characterization and biodegradation of biodegradable-cum-photoactive liquid-crystalline copolyesters derived from ferulic acid[J]. Polymer, 2007, 48(19): 5541-5547.
doi: 10.1016/j.polymer.2007.07.040
[11] 董奎勇, 杨婷婷, 王学利, 等. 生物基聚酯与聚酰胺纤维的研发进展[J]. 纺织学报, 2020, 41(1): 174-183.
DONG Kuiyong, YANG Tingting, WANG Xueli, et al. Research and development progress of bio-based polyester and polyamide fibers[J]. Journal of Textile Research, 2020, 41(1): 174-183.
doi: 10.1177/004051757104100215
[12] WEI Peng, CAKMAK Miko, CHEN Yuwei, et al. Aromatic liquid crystalline copolyesters with low Tm and high Tg: synjournal, characterization, and properties[J]. Journal of Applied Polymer Science, 2014, 131(13).40487.
[13] WEI Peng, WANG Yanping, XIA Yumin, et al. Synjournal and properties of novel photocrosslinkable aromatic-aliphatic liquid crystal copolyesters based on poly(ethylene glycol) and cinnamic acid[J]. Liquid Crystals, 2018, 45(2): 176-184.
[14] WEI Peng, CAKMAK M, CHEN Yuwei, et al. The influence of bisphenol AF unit on thermal behavior of thermotropic liquid crystal copolyesters[J]. Thermochimica Acta, 2014, 586:45-51.
doi: 10.1016/j.tca.2014.04.008
[15] SOMMA E, NOBILE M R. Rheology of a semi-rigid thermotropic liquid crystalline polymer[J]. Macromolecular Symposia, 2005, 228(1): 71-80.
doi: 10.1002/(ISSN)1521-3900
[16] SOMMA E, IERVOLINO R, NOBILE M R. The viscoelasticity of thermotropic liquid crystalline polymers: effects of the chemical composition[J]. Rheologica Acta, 2006, 45(4): 486-496.
doi: 10.1007/s00397-005-0080-0
[17] NARAYAN-SARATHY S, WEDLER W, LENZ R W, et al. A novel thermotropic polyester with a flexible side group: synjournal and characterization, as well as rheology of its poly(ethylene terephthalate) blends[J]. Polymer, 1995, 36(12): 2467-2471.
doi: 10.1016/0032-3861(95)97349-K
[18] KANG T K, HA C S. Syntheses and characterization of poly(ethylene terephthalate) modified with p-acetoxybenzoic acid[J]. Journal of Applied Polymer Science, 1999, 73(9): 1707-1719.
doi: 10.1002/(ISSN)1097-4628
[19] WEI Peng, LOU Hejuan, WANG Wei, et al. Synjournal and properties of wholly aromatic phosphorus-containing thermotropic liquid crystal copolyesters with excellent fibre formation ability[J]. Liquid Crystals, 2021, 48(4): 466-474.
doi: 10.1080/02678292.2020.1789768
[20] BIAN Xiangcheng, CHEN Li, WANG Junsheng, et al. A novel thermotropic liquid crystalline copolyester containing phosphorus and aromatic ether moity toward high flame retardancy and low mesophase temperature[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2010, 48(5): 1182-1189.
doi: 10.1002/pola.23878
[1] 孙朝续, 刘修才. 生物基聚酰胺56纤维在纺织领域的应用研究进展[J]. 纺织学报, 2021, 42(04): 26-32.
[2] 董奎勇, 杨婷婷, 王学利, 何勇, 俞建勇. 生物基聚酯与聚酰胺纤维的研发进展[J]. 纺织学报, 2020, 41(01): 174-183.
[3] 刘金鑫, 张海峰, 张星, 黄晨, 郑晓冰, 靳向煜. 多级拉伸与热定型对聚乙烯/聚丙烯双组分纤维结构和性能的影响[J]. 纺织学报, 2019, 40(05): 24-29.
[4] 莫达杰, 李旭明, 许增慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸阻燃纤维的制备及其性能[J]. 纺织学报, 2019, 40(05): 12-17.
[5] 李晓川, 瞿芊芊, 李旭明. 熔融纺聚乳酸/聚丙烯纤维的制备及其性能[J]. 纺织学报, 2019, 40(03): 8-12.
[6] 黄廷健 牟浩 阳知乾 任红檠 徐建军 刘鹏清. 高强高模聚甲醛纤维的制备及其性能[J]. 纺织学报, 2018, 39(10): 1-6.
[7] 夏维 陈立军 赵杰 相恒学 陈文萍 郭楷圣 陈伟 张杨凯 朱美芳. 皮芯型复合储能调温聚酰胺6纤维的制备与表征[J]. 纺织学报, 2018, 39(04): 1-8.
[8] 毛雪峰 钱杨 蒋佳莉 周邓飞 么丹阳 王秀华. 低熔点聚酰胺的制备与性能[J]. 纺织学报, 2016, 37(3): 6-10.
[9] 孙乐乐 肖长发 潘键 赵健 陈凯凯. 乙烯-四氟乙烯共聚纤维的性能[J]. 纺织学报, 2016, 37(12): 6-11.
[10] 汪洋 吕晓龙 武春瑞 高启君 张如意. 高强度聚偏氟乙烯纤维的熔融纺丝法制备[J]. 纺织学报, 2015, 36(06): 1-6.
[11] 王锐 莫小慧 王晓东. 海藻酸盐纤维应用现状及发展趋势[J]. 纺织学报, 2014, 35(2): 145-0.
[12] 韩娜 张荣 刘理璋 许超杰 张兴祥. 熔纺双组分调温聚丙烯纤维[J]. 纺织学报, 2012, 33(9): 6-9.
[13] 徐阳 王肖娜 杜远之 张亚曦 魏取福. 静电和熔融纺丝法对PET纤维表面结构的影响[J]. 纺织学报, 2012, 33(9): 1-5.
[14] 王燕萍, 夏于旻, 甘海啸, 朱卫彪, 钦维民, 王依民. 芳香族共聚酯的固相聚合和熔融纺丝[J]. 纺织学报, 2012, 33(6): 111-115.
[15] 刘淑强 张蕊萍 贾虎生 戴晋明 刘旭光 许并社. 可生物降解聚乳酸长丝的熔融纺丝工艺[J]. 纺织学报, 2012, 33(11): 11-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[6] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[7] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[8] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[9] 姚玉元;陈文兴;张利;潘勇. 催化氧化型消臭蚕丝纤维的研究[J]. 纺织学报, 2004, 25(03): 7 -8 .
[10] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .