纺织学报 ›› 2022, Vol. 43 ›› Issue (07): 1-8.doi: 10.13475/j.fzxb.20220307508

• 特约论文 •    下一篇

废旧棉/涤混纺织物的组分快速分离及其含量测定

张晓程1, 周彦1,2, 田卫国1, 乔昕1, 贾锋伟3, 许丽丽3, 张金明1, 张军1,2()   

  1. 1.中国科学院化学研究所 工程塑料重点实验室, 北京 100190
    2.中国科学院大学 化学学院, 北京 100049
    3.山东中科恒联生物基材料有限公司, 山东 潍坊 261106
  • 收稿日期:2022-03-21 修回日期:2022-04-19 出版日期:2022-07-15 发布日期:2022-07-29
  • 通讯作者: 张军
  • 作者简介:张晓程(1985—),女,助理研究员,硕士。主要研究方向为低品质纤维素高值化利用。
  • 基金资助:
    国家重点研发计划项目(2020YFC1910300);国家自然科学基金委地区联合基金项目(U2004211)

Rapid separation and content determination of fibers from waste cotton/polyester blended fabrics

ZHANG Xiaocheng1, ZHOU Yan1,2, TIAN Weiguo1, QIAO Xin1, JIA Fengwei3, XU Lili3, ZHANG Jinming1, ZHANG Jun1,2()   

  1. 1. Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
    2. College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
    3. Shandong Zhongke Henglian Biobased Materials Co., Ltd., Weifang, Shandong 261106, China
  • Received:2022-03-21 Revised:2022-04-19 Published:2022-07-15 Online:2022-07-29
  • Contact: ZHANG Jun

摘要:

基于高效溶解纤维素的低黏度离子液体/共溶剂体系,提出了一种废旧棉/涤(PET)混纺织物的组分分离与含量测定方法。考察了离子液体与共溶剂的种类及比例对废旧棉/涤混纺织物各组分的溶解能力、溶液黏度及分离过程对回收组分结构与性能的影响规律。结果表明:1-丁基-3-甲基咪唑醋酸盐/二甲基亚砜(质量比为1:1)共溶剂体系可选择性高效溶解棉/涤混纺织物中的纤维素成分,所得纤维素溶液黏度较低,经简单过滤即可实现棉/涤混纺织物中纤维素和PET的高效分离,该溶解分离过程在25~60 ℃即可实现,纤维素组分几乎不降解,可进一步加工成膜、纤维及凝胶微球等材料,未经预粉碎的废旧织物分离后回收的PET纤维形态完整,纯度高。该方法不仅能实现棉/涤混纺织物的组分分离,而且能准确测定棉(纤维素)和涤(PET)组成含量,有助于废旧纺织物的高效回收与再利用,具有重要的应用前景。

关键词: 废旧纺织品, 棉/涤混纺织物, 离子液体, 共溶剂, 纤维素

Abstract:

Based on ionic liquid/co-solvent system with excellent dissolving capability for cellulose and relatively low viscosity, a method for rapid component separation and content determination for waste cotton/polyester blended fabrics was proposed. The effect of ionic liquid and co-solvent on the dissolving capability, solution viscosity, structure and properties of separated components was studied. The results indicate that the 1-butyl-3-methylimidazolium acetate/dimethyl sulfoxide (the mass ratio is 1:1) system can selectively dissolve cellulose in the cotton/polyester blended fabrics, and the resultant cellulose solution has a low viscosity. Subsequently, after a simple filtration, cellulose and polyester fibers can be completely separated under simple and mild conditions, with the separation temperature to be 25-60 ℃. The cellulose component is almost non-degradable, and can be processed into film, fibers and microspheres. The polyester component with a high purity can also be separated and keep its original textile morphology in blended fabrics. In summary, the ionic liquid/co-solvent method not only can high-efficiently separate the components of the cotton/polyester blended fabrics, but also can accurately measure the components content. Therefore, this work provides a promising and useful method to the recycling and re-utilization of waste textiles, indicating a great potential in the practical applications.

Key words: waste textiles, cotton/polyester blended fabric, ionic liquid, co-solvent, cellulose

中图分类号: 

  • O636.1

图1

织物照片"

图2

离子液体及离子液体/共溶剂溶解棉/涤织物示意图"

图3

BmimAc/DMSO溶解分离预处理后棉/涤混纺织物照片"

图4

不同离子液体、离子液体/共溶剂及纤维素溶液的剪切黏度曲线"

图5

AmimCl/DMSO与BmimAc/DMSO共溶剂体系对棉/涤混纺织物的溶解过程"

图6

不同质量比BmimAc/DMSO共溶剂的纤维素溶解能力"

图7

BmimAc/DMSO溶解分离棉/涤混纺织物前后纤维素聚合度变化"

图8

分离前后棉和PET组分的化学结构和热性能"

表1

棉/涤混纺织物成分快速分离回收后组分含量测定结果"

混纺织物棉和涤组分
含量标签值
混纺织物棉和涤组分含量
新方法测定值
涤纶 涤纶
55 45 54.5 45.3
70 30 69.4 30.0
89 11 88.6 11.0
100 0 99.6

图9

离子液体共溶剂体系溶解分离棉/涤织物流程图"

图10

分离后棉和涤组分的成形性照片"

[1] SWATLOSKI Richard P, SPEAR Scott K, HOLBREY John D, et al. Dissolution of cellose with ionic liquids[J]. Journal of the American Chemical Society, 2002, 124(18): 4974-4975.
doi: 10.1021/ja025790m
[2] WU Jin, ZHANG Jun, ZHANG Hao, et al. Homogeneous acetylation of cellulose in a new ionic liquid[J]. Biomacromolecules, 2004, 5(2): 266-268.
pmid: 15002983
[3] KOSAN Birgit, MICHELS Christoph, MEISTER Frank. Dissolution and forming of cellulose with ionic liquids[J]. Cellulose, 2008, 15: 59-66.
doi: 10.1007/s10570-007-9160-x
[4] 张金明, 武进, 余坚, 等. 以离子液体为介质的纤维素加工与功能化[J]. 高分子学报, 2017(7):1058-1072.
ZHANG Jinming, WU Jin, YU Jian, et al. Processing and functionalization of cellulose with ionic liquids[J]. Acta Polymerica Sinica, 2017(7):1058-1072.
[5] 荣真, 陈昀, 唐世君. 离子液体溶解法分离废弃涤棉混纺织物[J]. 纺织学报, 2012, 33(8): 24-29.
RONG Zhen, CHEN Yun, TANG Shijun. Components separation of waste polyester-cotton blended textile with ionic liquid dissolving method[J]. Journal of Textile Research, 2012, 33(8): 24-29.
[6] SILVA Rasike D, WANG Xungai, BYRNE Nolene. Recycling textiles: the use of ionic liquids in the separation of cotton polyester blends[J]. RSC Advances, 2014(4): 29094-29098.
[7] 吕芳兵, 张传杰, 王潮霞, 等. 棉织物的离子液体溶解法回收[J]. 纺织学报, 2015, 36(5): 23-28.
LÜ Fangbing, ZHANG Chuanjie, WANG Chaoxia, et al. Recycling of cotton fabrics by ionic liquid dissolution process[J]. Journal of Textile Research, 2015, 36(5): 23-28.
[8] SILVA Rasike D, BYRNE Nolene. Utilization of cotton waste for regenerated cellulose fibres: influence of degree of polymerization on mechanical properties[J]. Carbohydrate Polymers, 2017, 174: 89-94.
doi: S0144-8617(17)30679-3 pmid: 28821145
[9] LV Yuxia, WU Jin, ZHANG Jinming, et al. Rheological properties of cellulose/ionic liquid/dimethylsulfoxide (DMSO) solutions[J]. Polymer, 2012, 53: 2524-2531.
doi: 10.1016/j.polymer.2012.03.037
[10] CLOUGH Matthew T. Organic electrolyte solutions as versatile media for the dissolution and regeneration of cellulose[J]. Green Chemistry, 2017, 19: 4754-4768.
doi: 10.1039/C7GC01776F
[11] JIANG Siqi, HU Yufeng, WANG Yichuan, et al. Viscosity of typical room-temperature ionic liquids: a critical review[J]. Journal of Physical and Chemical Reference Data, 2019, 48: 033101.
doi: 10.1063/1.5090486
[12] AWAJA Firas, PAVEL Dumitru. Recycling of PET[J]. European Polymer Journal, 2005, 41: 1453-1477.
doi: 10.1016/j.eurpolymj.2005.02.005
[13] SUN Xunwen, LU Canhui, ZHANG Wei, et al. Acetone-soluble cellulose acetate extracted from waste blended fabrics via ionic liquid catalyzed acetylation[J]. Carbohydrate Polymers, 2013(98): 405-411.
[14] 江渊, 国凤敏, 孙琳, 等. 傅里叶变换红外偏振光谱在涤纶工业丝结构表征中的应用[J]. 光谱学与光谱分析, 2000, 20(5): 665-667.
JIANG Yuan, GUO Fengmin, SUN Lin, et al. Characterization of the structure of industrial poly(ethylene terephthalate) fibers by polarized FTIR[J]. Spectroscopy and Spectral Analysis, 2000, 20(5): 665-667.
[1] 梁姣姣, 汪菁晶, 夏于旻, 朱新远, 闫冰, 孙利明, 王燕萍, 何勇, 王依民. 基于聚离子液体的常压阴离子可染聚丙烯纤维制备及其性能[J]. 纺织学报, 2022, 43(07): 17-21.
[2] 李琴, 李兴兴, 解芳芳, 周文龙, 陈恺宜, 刘宇清. 静电纺丝和炭化法制备纳米纤维素储能材料研究进展[J]. 纺织学报, 2022, 43(05): 178-184.
[3] 樊威, 刘红霞, 陆琳琳, 窦皓, 孙艳丽. 废旧天然纤维纺织品回收利用现状及高值化利用策略[J]. 纺织学报, 2022, 43(05): 49-56.
[4] 李兴兴, 李琴, 岳甜甜, 刘宇清. 微纳米纤维素材料的微流控制备技术研究进展[J]. 纺织学报, 2022, 43(04): 180-186.
[5] 孔维庆, 胡述锋, 俞森龙, 周哲, 朱美芳. 木质纤维素功能材料的研究进展[J]. 纺织学报, 2022, 43(04): 1-9.
[6] 魏娜娜, 刘碟, 马政, 焦晨璐. 纤维素/壳聚糖磁性气凝胶的冻融法制备及其对染料吸附性能[J]. 纺织学报, 2022, 43(02): 53-60.
[7] 金耀峰, 刘雷艮, 王薇, 陆鑫. 纳米纤维素室温诱导下的金红石型纳米二氧化钛制备及其紫外线屏蔽性能[J]. 纺织学报, 2022, 43(02): 176-182.
[8] 吴嘉茵, 王汉琛, 黄彪, 卢麒麟. 氯离子响应性纳米纤维素荧光水凝胶的构筑[J]. 纺织学报, 2022, 43(02): 44-52.
[9] 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171.
[10] 骆晓蕾, 刘琳, 姚菊明. 纯生物质纤维素气凝胶的制备及其阻燃性能[J]. 纺织学报, 2022, 43(01): 1-8.
[11] 董爽, 孔昱萤, 关晋平, 程献伟, 陈国强. 废旧涤纶/棉混纺军训服的化学分离回收[J]. 纺织学报, 2022, 43(01): 178-185.
[12] 杨星, 李轻舟, 吴敏, 周永凯. 欧盟纺织产业链上的绿色循环及废旧纺织品处理关键问题[J]. 纺织学报, 2022, 43(01): 106-112.
[13] 韩非, 郎晨宏, 邱夷平. 废旧纺织品资源化循环利用研究进展[J]. 纺织学报, 2022, 43(01): 96-105.
[14] 方寅春, 孙卫昊. 阻燃纤维素气凝胶研究进展[J]. 纺织学报, 2022, 43(01): 43-48.
[15] 高强, 王晓, 郭亚杰, 陈茹, 魏菊. 棉基Ti3C2Tx油水分离膜的制备及其性能[J]. 纺织学报, 2022, 43(01): 172-177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!