纺织学报 ›› 2022, Vol. 43 ›› Issue (05): 178-184.doi: 10.13475/j.fzxb.20201203207

• 综合述评 • 上一篇    下一篇

静电纺丝和炭化法制备纳米纤维素储能材料研究进展

李琴1, 李兴兴1, 解芳芳2, 周文龙3, 陈恺宜1, 刘宇清1()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215123
    2.赛得利(九江)纤维有限公司,江西 九江 332500
    3.江苏恒科新材料有限公司, 江苏 南通 226368
  • 收稿日期:2020-12-14 修回日期:2022-01-26 出版日期:2022-05-15 发布日期:2022-05-30
  • 通讯作者: 刘宇清
  • 作者简介:李琴(1997—),女,硕士生。主要研究方向为生物质智能纤维材料。

Research progress in nanocellulose energy storage materials based on electrospinning and carbonization methods

LI Qin1, LI Xingxing1, XIE Fangfang2, ZHOU Wenlong3, CHEN Kaiyi1, LIU Yuqing1()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
    2. Sateri(JiuJiang) Fibre Co., Ltd., Jiujiang, Jiangxi 332500, China
    3. Jiangsu Hengke Advanced Materials Co., Ltd., Nantong, Jiangsu 226368, China
  • Received:2020-12-14 Revised:2022-01-26 Published:2022-05-15 Online:2022-05-30
  • Contact: LIU Yuqing

摘要:

为促进纳米纤维素材料在储能领域的应用,综述了以其为原料,采用静电纺丝和炭化技术以及2种方法结合制备用于电池和超级电容器等电极材料和隔膜材料的工艺。通过分析发现:静电纺纳米纤维素材料具有电化学性能优异、柔性较好等优点,可用作增强材料与导电材料复合使用;炭化处理纳米纤维素材料具有独特微孔结构,比表面积大等特点,其存在的形态主要有气凝胶、纳米纤维膜及薄膜等;重点分析了2种方法叠加制备纳米纤维素材料在储能领域应用中存在的问题;提出构建环保、形态结构多样的天然基材储能器件是未来的发展方向,指出静电纺丝和炭化制备纳米纤维素材料在柔性储能器件和小巧型移动端储能设备中具有较好应用前景。

关键词: 纳米纤维素, 静电纺丝, 炭化处理, 储能器件, 柔性材料

Abstract:

In order to promote the application of nanocellulose materials for energy storage, the preparation of electrode materials and separator materials for batteries and supercapacitors was reviewed with concentrations on carbonization and electrospinning technology and the combination of the two methods. It was found that electrospun nanocellulose has the advantages of excellent electrochemical properties and good flexibility, which can be used as composite reinforcement and conductive materials. Carbonization treatment of nanofibers has unique microporous structure and large specific surface area, whose main forms are aerogels, fibrous membranes and thin films. After analyzing the existing problems using nanocellulose materials prepared by electrospinning and carbonization technology, the paper pointed out that the construction of environmentally friendly natural substrate energy storage devices with various forms and structures is one of the future development directions. It is summarized that the preparation of nano cellulose materials by electrospinning and carbonization has a good application prospect in flexible energy storage devices and compact mobile end energy storage equipment.

Key words: nanocellulose, electrospinning, carbonization, energy storage device, flexible material

中图分类号: 

  • TQ352.79

图1

静电纺丝示意图"

图2

纤维素炭化过程"

表1

炭化处理纳米纤维素材料储能应用"

材料 形态 应用 参考文献
纳米纤丝化纤维素 气凝胶 锂离子电池负极材料 [15-16]
石墨烯氧化物/纤维素纳米纤维 纳米纤维膜 钠离子电池负极材料 [17]
纤维素原纤维/活性炭 纳米纤维膜 超级电容器用活性炭 [18]
钛酸锂/纤维素纳米纤维/碳纳米管 纤维素基杂化薄膜 纸负极、锂离子电池轻质集电器 [19]
细菌纤维素/尿素 氮掺杂的纳米纤维 钾离子电池负极材料 [31]

图3

静电纺丝炭化纤维素纳米纤维"

图4

超级电容器结构"

[1] SHENG J, TONG S H, HE Z B, et al. Recent developments of cellulose materials for lithium-ion battery separators[J]. Cellulose, 2017, 24: 4103-4122.
doi: 10.1007/s10570-017-1421-8
[2] MA L N, BI Z J, XUE Y, et al. Bacterial cellulose: an encouraging eco-friendly nano-candidate for energy storage and energy conversion[J]. Journal of Materials Chemistry A, 2020, 8: 5812-5842.
doi: 10.1039/C9TA12536A
[3] 叶代勇. 纳米纤维素的制备[J]. 化学进展, 2007(10): 1568-1575.
YE Daiyong. Preparation of nanocellulose[J]. Progress in Chemistry, 2007(10): 1568-1575.
[4] 张艳玲, 段超, 董凤霞, 等. 纳米纤维素制备及产业化研究进展[J]. 中国造纸, 2021, 40(11):79-89.
ZHANG Yanling, DUAN Chao, DONG Fengxia, et al. Research advances in nanocellulose preparation and industrialization[J]. China Pulp & Paper, 2021, 40(11):79-89.
[5] 卿彦, 易佳楠, 吴义强, 等. 纳米纤维素储能研究进展[J]. 林业科学, 2018, 54(3): 134-143.
QING Yan, YI Jianan, WU Yiqiang, et al. Advances in application of biomass nanocellulose to green-energy storage[J]. Scientia Silvae Sinicae, 2018, 54(3): 134-143.
[6] 胡雨萌, 侯敏杰, 许苗军, 等. 纤维素基一体化三明治结构超级电容器的制备及性能[J]. 林产化学与工业, 2020, 40(3): 23-30.
HU Yumeng, HOU Minjie, XU Miaojun, et al. Preparation and properties of cellulose-based integrated sandwich structure supercapacitor[J]. Chemistry and Industry of Forest Products, 2020, 40(3): 23-30.
[7] GANESAN P, THILAGAVATHI G, AYESHVARYAA T V, 等. 纤维素静电纺丝及其难题[J]. 国际纺织导报, 2014, 42(6): 26-28,30.
GANESAN P, THILAGAVATHI G, AYESHVARYAA T V, et al. Electrospinning of cellulose and their complications-an overview[J]. Melliand China, 2014, 42(6): 26-28,30.
[8] 顾陆铭, 张明祖, 何金林, 等. 纤维素静电纺丝复合膜的制备及应用[J]. 高分子材料科学与工程, 2019, 35(4): 146-152.
GU Luming, ZHANG Mingzu, HE Jinlin, et al. Preparation and application of electrospun cellulose composite membranes[J]. Polymer Materials Science & Engineering, 2019, 35(4): 146-152.
[9] WANG S, ZHANG D L, SHAO Z Q, et al. Cellulosic materials-enhanced sandwich structure-like separator via electrospinning towards safer lithium-ion battery[J]. Carbohydrate Polymers, 2019, 214: 328-336.
doi: 10.1016/j.carbpol.2019.03.049
[10] 韩景泉, 王思伟, 岳一莹, 等. 静电纺定向纳米纤维素-碳纳米管/聚乙烯醇复合纤维导电膜及性能[J]. 复合材料学报, 2018, 35(9): 2351-2361.
HAN Jingquan, WANG Siwei, YUE Yiying, et al. Prepa-ration and characterization of cellulose nanocrystal-carbon nanotube/polyvinyl alcohol composite conductive membranes with oriented fibers by electrospinning[J]. Acta Materiae Compositae Sinica, 2018, 35(9): 2351-2361.
[11] CHEN W H, ZHANG L P, LIU C T, et al. Electrospun flexible cellulose acetate-based separators for sodium-ion batteries with ultralong cycle stability and excellent wettability: the role of interface chemical groups[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23883-23890.
[12] BHUTE M V, KONDAWAR S B. Electrospun poly (vinylidene fluoride)/cellulose acetate/AgTiO2 nanofibers polymer electrolyte membrane for lithium-ion battery[J]. Solid State Ionics, 2019, 333: 38-44.
doi: 10.1016/j.ssi.2019.01.019
[13] CHEN Y, QIU L L, MA X Y, et al. Electrospun cellulose polymer nanofiber membrane with flame resistance properties for lithium-ion batteries[J]. Carbohydrate Polymers, 2020, 234: 115970.
[14] 朱琼琼, 周花蕾, 李文军, 等. 纤维素在炭化和活化过程中的结构变化[J]. 北京科技大学学报, 2014, 36(11): 1545-1551.
ZHU Qiongqiong, ZHOU Hualei, LI Wenjun, et al. Structural evolution of cellulose during carbonization and activation[J]. Journal of University of Science and Technology Beijing, 2014, 36(11): 1545-1551.
[15] 孔雪琳, 卢芸, 叶贵超, 等. 纳米纤维素基多层级孔道结构碳气凝胶的制备及在锂电池中的应用[J]. 高等学校化学学报, 2017, 38(11): 1941-1946.
KONG Xuelin, LU Yun, YE Guichao, et al. Nanofibrillated cellulose derived hierarchical porous carbon aerogels: efficient anode material for lithium-ion battery[J]. Chemical Journal of Chinese Universties, 2017, 38(11): 1941-1946.
[16] 陈媛, 韩雁明, 范东斌, 等. 生物质纤维素基碳气凝胶材料研究进展[J]. 林业科学, 2019, 55(10): 88-98.
CHEN Yuan, HAN Yanming, FAN Dongbin, et al. Carbon aerogel based on biomass bellulose[J]. Scientia Silvae Sinicae, 2019, 55(10): 88-98.
[17] SHI Q Q, LIU D P, WANG Y, et al. High-performance sodium-ion battery anode via rapid microwave carbonization of natural cellulose nanofibers with graphene initiator[J]. Small, 2019, 15(41): 1902641.
doi: 10.1002/smll.201902641
[18] LI Z, LIU J, JIANG K R, et al. Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors[J]. Nano Energy, 2016, 25: 161-169.
doi: 10.1016/j.nanoen.2016.04.036
[19] CAO S M, FENG X, SONG Y Y, et al. In situ carbonized cellulose-based hybrid film as flexible paper anode for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(2): 1073-1079.
[20] FAN Q C, MA C, WU L Q, et al. Preparation of cellulose acetate derived carbon nanofibers by ZnCl2 activation as a supercapacitor electrode[J]. RSC Advances, 2019, 9: 6419-6428.
doi: 10.1039/C8RA07587E
[21] SVINTERIKOS E, ZUBURTIKUDIS I, Al-MARZOUQI M H. Electrospun lignin-derived carbon micro-and nanofibers: a review on precursors, properties, and applications[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(37): 13868-13893.
[22] SHENG J, TONG S H, HE Z B, et al. Recent developments of cellulose materials for lithium-ion battery separators[J]. Cellulose, 2017, 24: 4103-4122.
doi: 10.1007/s10570-017-1421-8
[23] QIU L, SHAO Z Q, YANG M S, et al. Electrospun carboxymethyl cellulose acetate butyrate (CMCAB) nanofiber for high-rate lithium-ion battery[J]. Carbohydrate Polymers, 2013, 96(1): 240-245.
doi: 10.1016/j.carbpol.2013.03.062
[24] QIU L, SHAO Z Q, XIANG P, et al. Study on novel functional materials carboxymethyl cellulose lithium (CMC-Li) improve high-performance lithium-ion battery[J]. Carbohydrate Polymers, 2014, 110: 121-127.
doi: 10.1016/j.carbpol.2014.03.052
[25] HAN W H, XIAO Y, YIN J P, et al. Fe3O4@carbon nanofibers synthesized from cellulose acetate and application in lithium-ion battery[J]. Langmuir, 2020, 36(38): 11237-11244.
doi: 10.1021/acs.langmuir.0c01399
[26] DENG L B, ROBERT J Young, IAN A Kinloch, et al. Supercapacitance from cellulose and carbon nanotube nanocomposite fibers[J]. ACS Applied Materials & Interfaces, 2013, 5(20): 9983-9990.
[27] SIMOTWO S K, CHINNAM P R, WUNDER S L, et al. Highly durable, self-standing solid-state supercapacitor based on an ionic liquid-rich ionogel and porous carbon nanofiber electrodes[J]. ACS Applied Materials & Interfaces, 2017, 9(39): 33749-33757.
[28] HAN J Q, WANG S W, ZHU S L, et al. Electrospun core-shell nanofibrous membranes with nanocellulose-stabilized carbon nanotubes for use as high-performance flexible supercapacitor electrodes with enhanced water resistance, thermal stability, and mechanical toughness[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44624-44635.
[29] CAI J, NIU H T, WANG H X, et al. High-performance supercapacitor electrode from cellulose-derived, inter-bonded carbon nanofibers[J]. Journal of Power Sources, 2016, 324: 302-308.
doi: 10.1016/j.jpowsour.2016.05.070
[30] ZHENG H, CAO Q P, ZHU M N, et al. Biomass-based flexible nanoscale carbon fibers: effects of chemical structure on energy storage properties[J]. Journal of Materials Chemistry A, 2021, 9: 10120-10134.
doi: 10.1039/D1TA00317H
[31] MA L, LI J L, LI Z B, et al. Ultra-stable potassium ion storage of nitrogen-doped carbon nanofiber derived from bacterial cellulose[J]. Nanomaterials, 2021, 11(5):1130.
doi: 10.3390/nano11051130
[1] 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69.
[2] 陈明军, 李好义, 杨卫民. 聚合物熔体微分静电纺电场对射流的影响及其物理模型[J]. 纺织学报, 2022, 43(05): 70-76.
[3] 杨科, 闫俊, 肖勇, 徐晶, 陈磊, 刘雍. 电化学沉积锌电池MnOx/碳纳米纤维膜自支撑正极的制备及其电化学特性[J]. 纺织学报, 2022, 43(05): 77-85.
[4] 孙哲茹, 张庆乐, 郝林聪, 程璐, 夏鑫. 仿星型拓扑几何结构聚氨酯/聚二甲基硅氧烷防水透湿膜制备与性能[J]. 纺织学报, 2022, 43(04): 40-46.
[5] 李兴兴, 李琴, 岳甜甜, 刘宇清. 微纳米纤维素材料的微流控制备技术研究进展[J]. 纺织学报, 2022, 43(04): 180-186.
[6] 孔维庆, 胡述锋, 俞森龙, 周哲, 朱美芳. 木质纤维素功能材料的研究进展[J]. 纺织学报, 2022, 43(04): 1-9.
[7] 金旭, 刘方, 杜嬛, 华超, 公旭中, 张秀芹, 汪滨. 纳米纤维负载型纳米零价铁基材料在环境修复中的应用研究进展[J]. 纺织学报, 2022, 43(03): 201-209.
[8] 张宇, 刘来俊, 李超婧, 晋巧巧, 谢千阳, 李佩伦, 王富军, 王璐. 外泌体功能化串晶结构纤维膜的制备及其成骨分化性能[J]. 纺织学报, 2022, 43(03): 24-30.
[9] 张爱琴, 郝佳程, 王芷, 王永超, 刘淑强, 董海亮, 贾虎生, 许并社. 键合型高分子荧光纤维的制备及其荧光增强机制[J]. 纺织学报, 2022, 43(03): 50-57.
[10] 陶旭晨, 李林, 徐珍珍. 杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能[J]. 纺织学报, 2022, 43(03): 64-70.
[11] 周筱雅, 马定海, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 闫涛. 涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用[J]. 纺织学报, 2022, 43(02): 110-115.
[12] 李加双, 张丽平, 付少海. 双稳态电致变色离子凝胶的制备及其在织物上的应用[J]. 纺织学报, 2022, 43(02): 24-29.
[13] 金耀峰, 刘雷艮, 王薇, 陆鑫. 纳米纤维素室温诱导下的金红石型纳米二氧化钛制备及其紫外线屏蔽性能[J]. 纺织学报, 2022, 43(02): 176-182.
[14] 吴嘉茵, 王汉琛, 黄彪, 卢麒麟. 氯离子响应性纳米纤维素荧光水凝胶的构筑[J]. 纺织学报, 2022, 43(02): 44-52.
[15] 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!