纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 110-115.doi: 10.13475/j.fzxb.20210707307

• 纺织工程 • 上一篇    下一篇

涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用

周筱雅1,2, 马定海3, 胡铖烨1,2, 洪剑寒1,2,4, 刘永坤1,2, 韩潇1,2(), 闫涛4   

  1. 1.绍兴文理学院 纺织服装学院, 浙江 绍兴 312000
    2.浙江省清洁染整技术研究重点实验室,浙江 绍兴 312000
    3.绍兴雨杭纺织有限公司, 浙江 绍兴 312030
    4.纺织行业智能纺织服装柔性器件重点实验室, 江苏 苏州 215123
  • 收稿日期:2021-07-24 修回日期:2021-11-29 出版日期:2022-02-15 发布日期:2022-03-15
  • 通讯作者: 韩潇
  • 作者简介:周筱雅(1999—),女,硕士生。主要研究方向为功能纺织品的开发与应用。
  • 基金资助:
    浙江省公益技术研究计划项目(LGG20E030002);中国纺织工业联合会纺织行业智能服装柔性器件重点实验室开放课题(SDHY2112)

Continuous preparation and application of polyester/polyamide 6 nanofiber coated yarns

ZHOU Xiaoya1,2, MA Dinghai3, HU Chengye1,2, HONG Jianhan1,2,4, LIU Yongkun1,2, HAN Xiao1,2(), YAN Tao4   

  1. 1. School of Textile and Apparel, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China
    3. Shaoxing Yuhang Textile Co., Ltd., Shaoxing, Zhejiang 312030, China
    4. Key Laboratory of Flexible Devices for Intelligent Textile and Apparel, Suzhou, Jiangsu 215123, China
  • Received:2021-07-24 Revised:2021-11-29 Published:2022-02-15 Online:2022-03-15
  • Contact: HAN Xiao

摘要:

为制备兼具力学性能和导电性能的氨敏传感器基体材料,采用一种水浴静电纺丝法连续制备涤纶工业丝为芯,聚酰胺6纳米纤维为皮层的纳米纤维包覆纱(NCY),并采用原位聚合法对其进行导电处理,制备表面负载聚吡咯的导电纳米纤维包覆纱(NCY/PPy),借助扫描电子显微镜和傅里叶红外光谱仪对NCY和NCY/PPy进行表面形貌和化学结构分析,同时研究了NCY/PPy的导电性能、力学性能、氨敏性能。结果表明,NCY具有超高的比表面积;经导电处理后,负载的聚吡咯未堵塞纤维之间的空隙,纳米纤维包覆层仍保持多孔网状结构,当吡哜浓度为0.07 mol/L 时,NCY/PPy的电导率达7.19×10-2 S/cm;高比表面积的纳米结构导电层,有利于提高气敏传感器对氨气的敏感性。

关键词: 水浴静电纺丝法, 纳米纤维包覆纱, 聚吡咯, 原位聚合法, 氨敏传感器

Abstract:

In order to prepare the substrate material of ammonia sensor with both mechanical and electrical properties, nanofiber coated yarns (NCY) with polyester industrial yarn as core and polyamide 6 nanofiber as skin was continuously prepared by a water bath electrostatic spinning method, and conductive treatment was carried out by in-situ polymerization to prepare conductive nanofiber coated yarns (NCY/PPy) with polypyrrole on the surface. The surface morphology and chemical structure of NCY and NCY/PPy were analyzed by means of scanning electron microscope and Fourier transform infrared spectrometer. Meanwhile, the conductivity, mechanical properties and ammonia sensitivity of NCY/PPy were studied. The results show that NCY has an extremely high specific surface area. After conducting treatment, the loaded polypyrrole does not block the gap between the fibers, and the nanofiber coating still maintains the porous network structure, and when the polypyrrole is 0.07 mol/L, the conductivity of NCY/PPy is 7.19×10-2 S/cm. Nano-structured conductive layer with high specific surface area is beneficial to improve the sensitivity of gas sensor to ammonia.

Key words: water bath electrospinning, nanofiber coated yarn, polypyrrole, in situ polymerization, ammonia sensor

中图分类号: 

  • TQ340.6

图1

自制双针头水浴静电纺丝设备"

表1

导电处理工艺参数"

样品名 吡咯浓度/
(mol·L-1)
PTSA浓度/
(mol·L-1)
FeCl3浓度/
(mol·L-1)
NCY/PPy-1 0.03
NCY/PPy-2 0.04
NCY/PPy-3 0.05 0.03 0.05
NCY/PPy-4 0.06
NCY/PPy-5 0.07
PIY/PPy-1 0.03
PIY/PPy-2 0.04
PIY/PPy-3 0.05 0.03 0.05
PIY/PPy-4 0.06
PIY/PPy-5 0.07

图2

NCY和NCY/PPy的光学照片"

图3

简易氨敏测试系统"

图4

NCY导电处理前后表面形态"

图5

纳米纤维直径分布"

图6

NCY导电处理前后的红外光谱图"

表2

吡咯浓度对NCY/PPy与PIY/PPy导电能力的影响"

吡咯浓度/
(mol·L-1)
电导率/(10-2 S·cm-1)
NCY/PPy PIY/PPy
0.03 2.58 45.0
0.04 3.10 74.9
0.05 2.85 63.1
0.06 3.43 97.1
0.07 7.19 52.9

图7

PIY与PIY/PPy-4的SEM图(×2 500)"

图8

PIY、NCY和NCY/PPy-4的应力-应变曲线"

表3

PIY、NCY和NCY/PPy-4的力学性能指标"

试样名称 断裂强
力/N
断裂伸
长率/%
初始模量/
(cN·dtex-1)
PIY 18.52±0.51 46.42±1.79 20.18±0.75
NCY 18.75±0.39 46.77±2.03 19.85±0.58
NCY/PPy-4 16.28±0.46 43.73±2.15 15.71±0.59

图9

PIY/PPy-4和 NCY/PPy-4对NH3的响应曲线"

图10

PPy氨敏响应机制"

[1] SMITH R E, TOTTIB S, VELLIOU E, et al. Development of a novel highly conductive and flexible cotton yarn for wearable pH sensor technology[J]. Sensors and Actuators B: Chemical, 2019, 287(5): 338-345.
doi: 10.1016/j.snb.2019.01.088
[2] MALOOK K, KHAN H, SHAH M, et al. Highly selective and sensitive response of polypyrrole-MnO2 based composites towards ammonia gas[J]. Polymer Composites, 2019, 40(4): 1676-1683.
doi: 10.1002/pc.v40.4
[3] KOROTCENKOV G. Metal oxides for solid-state gas sensors: what determines our choice?[J]. Materials Science and Engineering: B, 2007, 139(1): 1-23.
[4] BAI H, SHI G. Gas sensors based on conducting polymers[J]. Sensors, 2007, 7(3): 267-307.
doi: 10.3390/s7030267
[5] NAVALE S, KHUSPE G, CHOUGULE M, et al. Camphor sulfonic acid doped PPy/α-Fe2O3 hybrid nanocomposites as NO2 sensors[J]. RSC Advances, 2014, 4(54): 27998-28004.
doi: 10.1039/C4RA02924K
[6] CUI S Q, YANG L C, WANG J, et al. Fabrication of a sensitive gas sensor based on PPy/TiO2 nanocomposites films by layer-by-layer self-assembly and its application in food storage[J]. Sensors and Acturatous B: Chemical, 2016, 233(10): 227-246.
[7] JAMALABADI H, VAMOSFADERANI A M, ALIZADEH N. Detection of alkylamine vapors using PPy-ZnO hybrid nanocomposite sensor array and artificial neual network[J]. Sensors and Acturatous A: Physical, 2018, 280(9): 228-237.
[8] NYLANDER C, ARMGARTH M, LUNDSTRON I. An ammonia detector based on a conducting polymer[J]. Analytical Chemistry, 1983, 55(9): 17203-17207.
[9] PIRSA S, ALIZADEH N. Nanoporous conducting polypyrrole gas sensor coupled to a gas chromatograph for determination of aromatic hydrocarbons using dispersive liquid-liquid microextraction method[J]. IEEE Sensors Journal, 2011, 11(12): 3400-3405.
doi: 10.1109/JSEN.2011.2159970
[10] XUE P, TAO X M, TSANG H Y. In situ SEM studies on strain sensing mechanisms of PPy-coated electrically conducting fabrics[J]. Applied Surface Science, 2007, 253(7): 3387-3392.
doi: 10.1016/j.apsusc.2006.07.003
[11] PAN J J, YANG M Y, LUO L, et al. Strechable and highly sensitive braded composite yarn@polydopmine@polypyrrole for wearable applications[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 7338-7348.
[12] VELLGUTH N, SHAMSUYEVA M, KROLL S, et al. Electrical conductivity in biocomposites via polypyrrole coating[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(3): 2373-2381.
doi: 10.1007/s10854-018-0510-2
[13] BAI H, ZHAO L, LU C H, et al. Composite nanofibers of conducting polymers and hydrophobic insulting polymers: Preparation and sensing applications[J]. Polymers, 2009, 50(10): 3292-3301.
[14] HO T A, JUN T S, KIM Y S. Materials and NH3-sensing properties of polypyrrole coated tungsten oxide nanofibers[J]. Sensors and Actruators B: Chemical, 2013, 185(8): 523-529.
[15] JI S Z, LI Y, YANG M J. Gas sensing properties of a composite composed of electrospun polyu(methyl methacrylate) nanofibers and in situ polymerized polyaniline[J]. Sensors and Actuators B: Chemical, 2008, 133(2): 644-649.
doi: 10.1016/j.snb.2008.03.040
[16] LIU P H, WU S H, ZHANG Y, et al. A fast response ammonia sensor based on coaxial PPy-PAN nanofiber yarn[J]. Nanomaterials, 2016, 121(6): 121-130.
[17] WU S H, LIU P H, ZHANG Y, et al. Flexible and conductive nanofiber-structured single yarn sensor[J]. Sensors and Actuators B: Chemical, 2017, 252(11): 697-705.
doi: 10.1016/j.snb.2017.06.062
[18] DABIRIAN F, RAVANDI S A H, HINESTROZA J P, et al. Conformal coating of yarns and wires with electrospun nanofibers[J]. Polymer Engineering & Science, 2012, 52(8): 1724-1732.
[19] LIU C K, HE H J, SUN R J, et al. Preparation of continuous nanofiber core-spun yarn by a novel covering method[J]. Materials & Design, 2016, 112(12): 456-461.
[20] ZHOU Y M, WANG H B, HE J H, et al. Highly stretchable nanofiber-coated hybrid yarn with wavy structure fabricated by novel airflow-electrospinning method[J]. Materials Letters, 2019, 239(3): 1-4.
doi: 10.1016/j.matlet.2018.12.043
[21] ZHMAYEV E, CHO D, JOO Y L. Nanofibers from gas-assisted polymer melt electrospinning[J]. Polymer, 2010, 51(18): 4140-4144.
doi: 10.1016/j.polymer.2010.06.058
[22] 王怡婷, 詹建朝, 王迎. 静电纺制备聚氨酯-Fe3O4纳米纤维包芯纱[J]. 上海纺织科技, 2018, 46(6): 41-43, 48.
WANG Yiting, ZAN Jianchao, WANG Ying. Electrospun of polyurethane -Fe3O4 nanofiber core-spun yarn[J]. Shanghai Textile Science & Technology, 2018, 46(6): 41-43, 48.
[1] 邹梨花, 杨莉, 兰春桃, 阮芳涛, 徐珍珍. 层层组装氧化石墨烯/聚吡咯涂层棉织物的电磁屏蔽性能[J]. 纺织学报, 2021, 42(12): 111-118.
[2] 陈莹, 方浩霞. 疏水性导电聚吡咯整理棉织物的制备及其性能[J]. 纺织学报, 2021, 42(10): 115-119.
[3] 王晓菲, 万爱兰, 沈新燕. 基于聚多巴胺修饰的聚吡咯导电织物制备与应变传感性能[J]. 纺织学报, 2021, 42(06): 114-119.
[4] 刘晓倩, 陈玉, 周惠敏, 闫源, 夏鑫. 等离子体接枝丙烯酸改性聚丙烯腈导电纳米纤维纱线的制备[J]. 纺织学报, 2021, 42(05): 109-114.
[5] 周歆如, 周筱雅, 马咏健, 胡铖烨, 赵晓曼, 洪剑寒, 韩潇. 导电聚苯胺/聚氨酯泡沫的制备及其压力传感性能[J]. 纺织学报, 2021, 42(04): 62-68.
[6] 刘淑强, 靖逸凡, 杨雅茹, 吴改红, 余娟娟, 王凯文, 李惠敏, 李甫, 张曼. 自修复双层微胶囊的制备及其在玄武岩织物上的应用[J]. 纺织学报, 2021, 42(04): 127-131.
[7] 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117.
[8] 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106.
[9] 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97.
[10] 王晓菲, 万爱兰. 紫外线辐照聚吡咯/银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116.
[11] 林佳濛, 万爱兰, 缪旭红. 聚吡咯/银导电涤纶织物的制备及其性能[J]. 纺织学报, 2020, 41(03): 113-117.
[12] 陈莹, 周爽, 韦恬静, 方浩霞, 李宇菲. 聚吡咯复合织物的软模板法制备及其性能[J]. 纺织学报, 2019, 40(12): 93-97.
[13] 何青青, 徐红, 毛志平, 张琳萍, 钟毅, 吕景春. 高导电性聚吡咯涂层织物的制备[J]. 纺织学报, 2019, 40(10): 113-119.
[14] 林佳濛, 缪旭红, 万爱兰. 等离子体预处理对聚吡咯/涤纶经编导电织物结构和性能的影响[J]. 纺织学报, 2019, 40(09): 97-101.
[15] 姜珊, 万爱兰, 缪旭红, 蒋高明, 马丕波, 陈晴. 等离子体处理对聚吡咯/涤纶复合导电纱线性能的影响[J]. 纺织学报, 2019, 40(08): 95-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姬长春, 张开源, 王玉栋, 王新厚. 熔喷三维气流场的数值计算与分析[J]. 纺织学报, 2019, 40(08): 175 -180 .
[2] 孙光武, 李杰聪, 辛三法, 王新厚. 基于非牛顿流体本构方程的熔喷纤维直径预测[J]. 纺织学报, 2019, 40(11): 20 -25 .
[3] 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26 -32 .
[4] 李辉芹, 张楠, 温晓丹, 巩继贤, 赵晓明, 王支帅. 纤维材料降噪结构体的研究进展[J]. 纺织学报, 2020, 41(03): 175 -181 .
[5] 张星, 刘金鑫, 张海峰, 王玉晓, 靳向煜. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(03): 168 -174 .
[6] 孙焕惟, 张恒, 甄琪, 朱斐超, 钱晓明, 崔景强, 张一风. 丙烯基纳微米弹性过滤材料的熔喷成型及其过滤性能[J]. 纺织学报, 2020, 41(10): 20 -28 .
[7] 王玉栋, 姬长春, 王新厚, 高晓平. 新型熔喷气流模头的设计与数值分析[J]. 纺织学报, 2021, 42(07): 95 -100 .
[8] 高猛, 王增元, 漏琦伟, 陈钢进. 电晕驻极熔喷聚丙烯驻极体非织造布的电荷捕获特性[J]. 纺织学报, 2021, 42(09): 52 -58 .
[9] 胡侨乐, 边国丰, 邱夷平, 魏毅, 徐珍珍. 高速列车地板用蜂窝夹芯结构复合材料隔声性能[J]. 纺织学报, 2021, 42(10): 75 -83 .
[10] 丁倩, 邓炳耀, 李昊轩. 全纤维光驱动界面蒸发系统在海水淡化工程中的应用研究进展[J]. 纺织学报, 2022, 43(01): 36 -42 .