纺织学报 ›› 2022, Vol. 43 ›› Issue (01): 36-42.doi: 10.13475/j.fzxb.20210902207

• 纤维材料 • 上一篇    下一篇

全纤维光驱动界面蒸发系统在海水淡化工程中的应用研究进展

丁倩1,2, 邓炳耀1, 李昊轩1()   

  1. 1.江南大学 纺织科学与工程学院, 江苏 无锡 214122
    2.东华大学 纺织学院, 上海 201620
  • 收稿日期:2021-09-08 修回日期:2021-11-05 出版日期:2022-01-15 发布日期:2022-01-28
  • 通讯作者: 李昊轩
  • 作者简介:丁倩(1988—),女,实验师,硕士。主要研究方向为多功能纤维集合体的制备与研究。
  • 基金资助:
    中国博士后科学基金面上项目(2020M672797)

Research progress in all-fiber solar induced interface evaporation system to assist desalination with zero carbon emission

DING Qian1,2, DENG Bingyao1, LI Haoxuan1()   

  1. 1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2021-09-08 Revised:2021-11-05 Published:2022-01-15 Online:2022-01-28
  • Contact: LI Haoxuan

摘要:

太阳光驱动界面水蒸发技术可将吸收的太阳光转换成热能,并加热处于液-气界面的水,有效提高光-蒸汽转换效率,有望成为低碳、绿色环境下的海水淡化新途径。为解决这项技术中存在的蒸发速率偏低、蒸汽收集困难以及抗生物沉积能力弱等问题的挑战,综述了国内外光驱动界面水蒸发的研究进展及纤维基蒸发器的独特优势;从光吸收体、漂浮体的设计与制备角度出发,分析纤维基漂浮体与光吸收体的构效关系、水传输和热管理的设计及作用机制,重点阐述纯有机光热纤维在海水淡化领域的最新应用;最后展望了纤维基蒸发器的发展前景与挑战,以期纤维基光驱动界面蒸发系统在规模化零碳排放的海水淡化等领域快速发展。

关键词: 非织造材料, 界面蒸发, 海水淡化, 光热转换材料, 零碳排放

Abstract:

Solar driven interfacial steam generation (SISG) is a desirable strategy to enhance solar to steam efficiency by transferring sunlight into heat and inspiring seawater vaporization at interface between liquid and gas. SISG has been recognized as a promising strategy to solve water shortages in an eco-friendly and low-cost way, due to the fact that it just utilizes sea water and solar energy, both of which are considered as inexhaustible resources on the earth. However, there still are many challenges, including low evaporation rate, difficulty in collecting vapor and poor antibiofouling. Recent advances in SISG and the unique advantages of fiber based evaporator in this area were reviewed and demonstrated. The structure-function relationship between fiber based floating structure and light absorber were analyzed from the perspectives of design and fabrication of light absorber and floating structure, water transportation, as well as thermal management and their mechanisms. Then, pure organic fiber with photothermal properties for SISG was focused on, and future development and challenges of the SISG was discussed. It is believed that the fiber-based evaporation system will play its role in seawater desalination without causing further carbon emission.

Key words: nonwoven material, interfacial steam generation, desalination, photothermal absorber, zero carbon emission

中图分类号: 

  • TS101

图1

光驱动界面水蒸发系统示意图"

图2

用于光驱动界面蒸发的几种常见蒸发器"

图3

几种典型的纯有机纤维基蒸发器"

[1] VOROSMARTY C J, GREEN P, SALISBURY J, et al. Global water resources:vulnerability from climate change and population growth[J]. Science, 2000, 289(5477): 284-288.
doi: 10.1126/science.289.5477.284
[2] RODELL M, FAMIGLIETTI J S, WIESE D N, et al. Emerging trends in global freshwater availability[J]. Nature, 2018, 557(7739): 651-659.
doi: 10.1038/s41586-018-0123-1
[3] 魏天骐, 李秀强, 李金磊, 等. 界面光蒸汽转化研究进展[J]. 科学通报, 2018, 63(14): 1404-1416.
WEI Tianqi, LI Xiuqiang, LI Jinlei, et al. Interfacial solar vapor generation[J]. Science Bulletin, 2018, 63(14): 1404-1416.
doi: 10.1016/j.scib.2018.10.005
[4] SHANNON M A, BOHN P W, ELIMELECH M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7158): 301-310.
doi: 10.1038/nature06599
[5] TAO P, NI G, SONG C, et al. Solar-driven interfacial evaporation[J]. Nature Energy, 2018, 3(12): 1031-1041.
doi: 10.1038/s41560-018-0260-7
[6] GAO M M, ZHU L L, PEH C K, et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J]. Energy Environmental Science, 2019, 12(3): 841-864.
doi: 10.1039/C8EE01146J
[7] ZHOU L, LI X, NI G, et al. The revival of thermal utilization from the sun: interfacial solar vapor generation[J]. National Science Review, 2019, 6(3): 562-578.
doi: 10.1093/nsr/nwz030
[8] 梁洁, 刘鑫, 周林. 等离激元光热效应的新应用:太阳能蒸气产生[J]. 激光与光电子学进展, 2019, 56(20): 67-79.
LIANG Jie, LIU Xin, ZHOU Lin. Application of plasmon photothermal effect in solar vapor generation[J]. Laser & Optoelectronics Progress, 2019, 56(20): 67-79.
[9] JUN Y S, WU X H, GHIM D, et al. Photothermal membrane water treatment for two worlds[J]. Accounts of Chemical Research, 2019, 52(5): 1215-1225.
doi: 10.1021/acs.accounts.9b00012
[10] ZHOU X Y, GUO Y H, ZHAO F, et al. Hydrogels as an emerging material platform for solar water purification[J]. Accounts of Chemical Research, 2019, 52(11): 3244-3253.
doi: 10.1021/acs.accounts.9b00455
[11] 李习标, 关昌峰, 阎华, 等. 碳基材料光热水蒸发研究进展[J]. 化工新型材料, 2021, 49(8): 21-27.
LI Xibiao, GUAN Changfeng, YAN Hua, et al. Research progress on carbon based materials for solar steam generation[J]. New Chemical Materials, 2021, 49(8): 21-27.
[12] 郝亮, 刘宁, 牛冉, 等. 基于柔性多孔碳/纸浆纤维膜的高性能耐盐太阳能界面蒸发[J]. 中国科学:材料, 2021.DOI : 10.1007/s40843-021-1721-6.
doi: 10.1007/s40843-021-1721-6
HAO Liang, LIU Ning, NIU Ran, et al. High-performance salt-resistant solar interfacial evaporation by flexible robust porous carbon/pulp fiber membrane[J]. Science China Materials, 2021.DOI: 10.1007/s40843-021-1721-6.
doi: 10.1007/s40843-021-1721-6
[13] CHEN C J, HU L B. Nanoscale ion regulation in wood-based structures and their device applications[J]. Advanced Materials, 2021.DOI: 10.1002/adma.202002890.
doi: 10.1002/adma.202002890
[14] XU N, HU X Z, XU W C, et al. Mushrooms as efficient solar steam-generation devices[J]. Advanced Materials, 2017.DOI: 10.1002/adma.201606762.
doi: 10.1002/adma.201606762
[15] ZHAO F, GUO Y, ZHOU X, et al. Materials for solar-powered water evaporation[J]. Nature Reviews Materials, 2020, 5(5): 388-401.
doi: 10.1038/s41578-020-0182-4
[16] 李政通, 王成兵. 多尺度Ag/CuO复合光热材料的制备及在海水淡化中的应用[J]. 无机化学学报, 2020, 36(8): 1457-1464.
LI Zhengtong, WANG Chengbing. Multi-scale Ag/CuO photothermal materials: preparation and application in seawater desalination[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(8): 1457-1464.
[17] TIAN S, HUANG Z M, TAN J H, et al. Manipulating interfacial charge-transfer absorption of cocrystal absorber for efficient solar seawater desalination and water purification[J]. ACS Energy Letters, 2020, 5(8): 2698-2705.
doi: 10.1021/acsenergylett.0c01466
[18] WU X, GAO T, HAN C H, et al. A photothermal reservoir for highly efficient solar steam generation without bulk water[J]. Science Bulletin, 2019, 64(21): 1625-1633.
doi: 10.1016/j.scib.2019.08.022
[19] SHI Y, LI R Y, IN Y, et al. A 3D photo thermal structure toward improved energy efficiency in solar steam generation[J]. Joule, 2020, 2(6): 1171-1186.
doi: 10.1016/j.joule.2018.03.013
[20] WANG Y, WANG C, SONG X, et al. Improved light-harvesting and thermal management for efficient solar-driven water evaporation using 3D photothermal cones[J]. Journal of Materials Chemistry A, 2018, 6(21): 9874-9881.
doi: 10.1039/C8TA01469H
[21] LI Y, FAN J, WANG R, et al. 3D tree-shaped hierarchical flax fabric for highly efficient solar steam generation[J]. Journal of Materials Chemistry A, 2021, 9(4): 2248-2258.
doi: 10.1039/D0TA09570B
[22] CHEN C, KUANG Y, HU L. Challenges and opportunities for solar evaporation[J]. Joule, 2020, 3(3): 683-718.
doi: 10.1016/j.joule.2018.12.023
[23] ZHOU J, GU Y, LIU P, et al. Development and evolution of the system structure for highly efficient solar steam generation from zero to three dimensions[J]. Advanced Functional Materials, 2019.DOI: 10.1002/adfm.201903255.
doi: 10.1002/adfm.201903255
[24] XU W C, HU X Z, ZHUANG S L, et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials, 2018, 8(14): 1702884.
doi: 10.1002/aenm.v8.14
[25] WANG Y, WU X, SHAO B, et al. Boosting solar steam generation by structure enhanced energy management[J]. Science Bulletin, 2020, 65(16): 1380-1388.
doi: 10.1016/j.scib.2020.04.036
[26] LI J, WANG X, LIN Z, et al. Over 10 kg/(m·h) evaporation rate enabled by a 3D interconnected porous carbon foam[J]. Joule, 2020, 4(4): 1-10.
doi: 10.1016/j.joule.2019.10.011
[27] WANG F Y, XU N, ZHAO W, et al. A high-performing single-stage invert-structure solar water purifier through enhanced absorption and condensation[J]. Joule, 2021, 5(6): 1602-1612.
doi: 10.1016/j.joule.2021.04.009
[28] WU T, LI H X, XIE M H, et al. Incorporation of gold nanocages into electrospun nanofibers for efficient water evaporation through photothermal heating[J]. Materials Today Energy, 2019, 12:129-135.
doi: 10.1016/j.mtener.2018.12.008
[29] ZHU Y, TIAN G, LIU Y, et al. Low-cost,unsinkable,and highly efficient solar evaporators based on coating MWCNTs on nonwovens with unidirectional water-transfer[J]. Advanced Science, 2021.DOI : 10.1002/advs.202101727.
doi: 10.1002/advs.202101727
[30] ZHANG Q, XIAO X, ZHAO G, et al. An all-in-one and scalable carbon fibre-based evaporator by using the weaving craft for high-efficiency and stable solar desalination[J]. Journal of Materials Chemistry A, 2021, 9(17): 10945-10952.
doi: 10.1039/D1TA01295A
[31] WANG F, WEI D, LI Y, et al. Chitosan/reduced graphene oxide-modified spacer fabric as a salt-resistant solar absorber for efficient solar steam generation[J]. Journal of Materials Chemistry A, 2019, 7(31): 18311-18317.
doi: 10.1039/C9TA05859A
[32] 陈亚丽, 赵国猛, 任李培, 等. 芳纶织物基界面光热蒸发材料的制备及其性能[J]. 纺织学报, 2021, 42(8): 115-121.
CHEN Yali, ZHAO Guomeng, REN Lipei, et al. Preparation and performance of aramid fabric-based interfacial photothermal evaporation materials[J]. Journal of Textile Research, 2021, 42(8): 115-121.
[33] LI H, WEN H, LI J, et al. Doping AIE photothermal molecule into all-fiber aerogel with self-pumping water function for efficiency solar steam generation[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 26033-26040.
[34] LI H, WEN H, ZHANG Z, et al. Inverse thinking of aggregation-induced emission principle:amplifying molecular motions to boost photothermal efficiency of nanofibers[J]. Angewandte Chemie International Edition, 2020, 59(46): 20371-20375.
doi: 10.1002/anie.v59.46
[35] LI H, ZHU W, LI M, et al. Side area-assisted 3D evaporator with antibiofouling function for ultra-efficient solar steam generation[J]. Advanced Materials, 2021.DOI: 10.1002/adma.202102258.
doi: 10.1002/adma.202102258
[1] 朱斐超, 张宇静, 张强, 叶翔宇, 张恒, 汪伦合, 黄瑞杰, 刘国金, 于斌. 聚乳酸基生物可降解熔喷非织造材料的研究进展与展望[J]. 纺织学报, 2022, 43(01): 49-57.
[2] 葛灿, 张传雄, 方剑. 界面光热转换水蒸发系统用纤维材料的研究进展[J]. 纺织学报, 2021, 42(12): 166-173.
[3] 柳洋, 夏兆鹏, 王亮, 范杰, 曾强, 刘雍. 医用防护服的发展现状及趋势[J]. 纺织学报, 2021, 42(09): 195-202.
[4] 陈亚丽, 赵国猛, 任李培, 潘露琪, 陈贝, 肖杏芳, 徐卫林. 芳纶织物基界面光热蒸发材料的制备及其性能[J]. 纺织学报, 2021, 42(08): 115-121.
[5] 孙焕惟, 张恒, 甄琪, 朱斐超, 钱晓明, 崔景强, 张一风. 丙烯基纳微米弹性过滤材料的熔喷成型及其过滤性能[J]. 纺织学报, 2020, 41(10): 20-28.
[6] 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26.
[7] 陈诗萍, 陈旻, 魏岑, 王富军, 王璐. 医用防护服的构效特点及其研发趋势[J]. 纺织学报, 2020, 41(08): 179-187.
[8] 安琪, 付译鋆, 张瑜, 张伟, 王璐, 李大伟. 医用防护服用非织造材料的研究进展[J]. 纺织学报, 2020, 41(08): 188-196.
[9] 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26-32.
[10] 刘禹豪, 孙辉, 王捷琪, 于斌. TiO2/MIL-88B(Fe)/聚丙烯复合熔喷非织造材料的制备及其性能[J]. 纺织学报, 2020, 41(02): 95-102.
[11] 张恒, 甄琪, 刘雍, 宋卫民, 刘让同, 张一风. 嵌入式聚丙烯/聚乙二醇微纳米纤维材料的结构特征及其气固过滤性能[J]. 纺织学报, 2019, 40(09): 28-34.
[12] 齐国瑞, 柯勤飞, 李祖安, 黄族健, 靳向煜, 黄晨. 纯棉水刺非织造材料的单向导水无氟整理[J]. 纺织学报, 2019, 40(07): 119-127.
[13] 邹志伟, 钱晓明, 钱幺, 赵宝宝, 朵永超. 油剂去除对针刺非织造过滤材料驻极性能的影响[J]. 纺织学报, 2019, 40(06): 79-84.
[14] 张恒, 申屠宝卿, 章伟, 张一风, 崔国士. 聚乙二醇/聚丙烯熔喷非织造材料的叶脉仿生结构及其保液性能[J]. 纺织学报, 2019, 40(05): 18-23.
[15] 赵宝宝 钱幺 钱晓明 范金土 朵永超. 梯度结构双组分纺粘水刺非织造材料的制备及其性能[J]. 纺织学报, 2018, 39(05): 56-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[2] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[3] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[4] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[5] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[6] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[7] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[8] 姚玉元;陈文兴;张利;潘勇. 催化氧化型消臭蚕丝纤维的研究[J]. 纺织学报, 2004, 25(03): 7 -8 .
[9] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[10] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .