纺织学报 ›› 2022, Vol. 43 ›› Issue (12): 125-130.doi: 10.13475/j.fzxb.20211107106

• 染整与化学品 • 上一篇    下一篇

纺织品中喹啉含量的快速测定

尹喆1,2, 赵海浪2(), 徐红1, 毛志平1, 谭玉静2   

  1. 1.东华大学 生态纺织品教育部重点实验室, 上海 201620
    2.上海市质量监督检验技术研究院, 上海 200040
  • 收稿日期:2021-11-16 修回日期:2022-09-14 出版日期:2022-12-15 发布日期:2023-01-06
  • 通讯作者: 赵海浪
  • 作者简介:尹喆(1997—),女,硕士生。主要研究方向为生态纺织品中有害物质检测。
  • 基金资助:
    上海市科技创新行动计划项目(20142202400)

Rapid determination of quinoline in textiles

YIN Zhe1,2, ZHAO Hailang2(), XU Hong1, MAO Zhiping1, TAN Yujing2   

  1. 1. Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
    2. Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200040, China
  • Received:2021-11-16 Revised:2022-09-14 Published:2022-12-15 Online:2023-01-06
  • Contact: ZHAO Hailang

摘要:

为解决现有纺织品中喹啉化学提取法样品提取时间长、有机试剂用量大的问题,建立了热裂解/热脱附-气相色谱-质谱(Py/TD-GC-MS)法快速测定纺织品中喹啉的分析方法。该方法所测样品无需处理,直接在热裂解/热脱附装置中热脱附出喹啉,再进入气相色谱-质谱联用仪进行定性和定量测定。针对喹啉标准溶液中喹啉在等待分析过程中挥发的问题,加入了聚氯乙烯(PVC)作为喹啉的吸附剂,提高喹啉标准溶液分析的准确性;确定了热脱附条件:温度为240 ℃,时间为6 s,升温速率为50 ℃/min,接口温度为300 ℃。结果表明,该方法在线性范围 10~1 000 mg/kg内,相关系数为0.994,方法检出限为3.520 mg/kg,定量限为11.760 mg/kg,加标回收率为 90.02%~102.07%, 相对标准偏差为1.27%~4.53%,适用于纺织品中喹啉的快速测定。

关键词: 纺织品, 喹啉, 吸附剂, 热脱附-气相色谱-质谱分析, 快速测定, 聚氯乙烯

Abstract:

In order to reduce the extraction time from small amount of organic reagent, a rapid analytical method for the determination of quinoline in textiles by pyrolysis/thermal desorption-gas chromatography-mass spectrometry(Py/TD-GC-MS) was established. This method requires no sample processing, and the quinoline is thermally desorbed directly in the pyrolysis/thermal desorption device before entering the GC-MS for qualitative and quantitative determination. To solve the problem of quinoline volatilization before and during the analysis process, polyvinyl chloride(PVC) was added as the adsorbent of quinoline to improve the accuracy of quinoline standard solution analysis. The thermal desorption temperature was 240 ℃, the thermal desorption time was 6 s, the heating rate was 50 ℃/min and the interface temperature was 300 ℃. The results show that the linear range of the method was 10-1 000 mg/kg, the correlation coefficient was 0.994, the limit of detection was 3.520 mg/kg, the limit of quantification was 11.760 mg/kg, the spiked recoveries were 90.02%-102.07%, and the relative standard deviation was 1.27%-4.53%. All these suggest that this method is suitable for rapid determination of quinoline in textiles.

Key words: textile, quinoline, adsorbent, thermal desorption-gas chromatography-mass spectrometry, rapid determination method, polyvinyl chloride

中图分类号: 

  • O657.63

图1

等待时间对喹啉质谱响应强度的影响"

图2

PVC溶液质量浓度对喹啉质谱响应强度的影响"

图3

PVC溶液和喹啉标准溶液B的EGA-MS选择离子图"

图4

热脱附温度对喹啉质谱响应强度的影响"

图5

热脱附时间对喹啉质谱响应强度的影响"

图6

升温速率对喹啉质谱响应强度的影响"

图7

接口温度对喹啉质谱响应强度的影响"

图8

喹啉标准曲线的线性关系"

表1

喹啉的加标回收率及重现性"

纺织面料 加标量/(mg·kg-1) 平均加标回收率/% RSD/%
10 91.79 4.22
200 96.77 1.89
1 000 102.07 3.44
羊毛 10 94.51 4.53
200 97.84 3.33
1 000 101.31 1.27
涤纶 10 90.75 4.25
200 94.92 1.54
1 000 98.59 1.71
锦纶 10 90.02 3.93
200 93.13 1.48
1 000 97.49 1.63

表2

化学提取检测法与Py/TD-GC-MS法比较"

检测方法 样品处理
有机试剂
样品处理
时间/min
喹啉含量/(mg·kg-1)
橙色纱线 黑色纱线
化学提取检测法 15 mL甲醇 30 69.73 60.33
Py/TD-GC-MS法 - 5 91.63 79.04
[1] LAM P, KAN C, YUEN M C, et al. Studies on quinoline type dyes and their characterisation studies on acrylic fabric[J]. Coloration Technology, 2012, 128(3): 192-198.
doi: 10.1111/j.1478-4408.2012.00363.x
[2] LUONGO G, THORSÉN G, ÖSTMAN C. Quinolines in clothing textiles: a source of human exposure and wastewater pollution?[J]. Analytical and Bioanalytical Chemistry, 2014, 406(12): 2747-2756.
doi: 10.1007/s00216-014-7688-9
[3] LENSEN G, JUNGBAUER F, GONÇALO M, et al. Airborne irritant contact dermatitis and conjunctivitis after occupational exposure to chlorothalonil in textiles[J]. Contact Dermatitis, 2007, 57(3): 181-186.
pmid: 17680869
[4] OLIVEIRA D P, CARNEIRO P A, SAKAGAMI M K, et al. Chemical characterization of a dye processing plant effluent: identification of the mutagenic components[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2007, 626(1/2): 135-142.
doi: 10.1016/j.mrgentox.2006.09.008
[5] LUONGO G, IADARESTA F, MOCCIA E, et al. Determination of aniline and quinoline compounds in textiles[J]. Journal of Chromatography A, 2016, 1471(11): 11-18.
doi: 10.1016/j.chroma.2016.09.068
[6] KARLBERG A T, BERGSTRÖM M A, BÖRJE A, et al. Allergic contact dermatitis: formation, structural requirements, and reactivity of skin sensitizers[J]. Chemical Research in Toxicology, 2008, 21(1): 53-69.
doi: 10.1021/tx7002239
[7] KEZIC S, NIELSEN J B. Absorption of chemicals through compromised skin[J]. International Archives of Occupational and Environmental Health, 2009, 82(6): 677-688.
doi: 10.1007/s00420-009-0405-x pmid: 19238423
[8] NEUWOEHNER J, REINEKE A K, HOLLENDER J, et al. Ecotoxicity of quinoline and hydroxylated derivatives and their occurrence in groundwater of a tar-contaminated field site[J]. Ecotoxicology and Environmental Safety, 2009, 72(3): 819-827.
doi: 10.1016/j.ecoenv.2008.04.012 pmid: 18550163
[9] 季浩, 沈日炯, 傅萍. 气相色谱法测定染料产品中喹啉的含量[J]. 染料与染色, 2014, 51(5): 58-61.
JI Hao, SHEN Rijiong, FU Ping. Determination of quinoline in dyestuff by gas chromatography[J]. Dyestuff and Dyeing, 2014, 51(5): 58-61.
[10] 保琦蓓, 毛英俊, 沈波音, 等. 气相色谱-质谱法测定纺织品中喹啉及其同分异构体异喹啉的残留量[J]. 理化检验(化学分册), 2020, 56(4): 423-427.
BAO Qibei, MAO Yingjun, SHEN Boyin, et al. Determination of quinoline and its isomer isoquinoline residues in textiles by gas chromatography-mass spectrometry[J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2020, 56(4): 423-427.
[11] PAUK V, KREJČÍ M, LEMR K. Unified chromatography-mass spectrometry as a versatile tool for determination of food dyes[J]. Analytica Chimica Acta, 2021, 1157(5): 1-11.
[12] 林金美, 薛建平, 杨燕, 等. 高效液相色谱法测定纺织品中喹啉的含量[J]. 福建轻纺, 2020 (9): 19-23.
LIN Jinmei, XUE Jianping, YANG Yan, et al. Determination of the content of quinoline in textile via gas chromatography-mass spectrometric method[J]. The Light & Textile Industries of Fujian, 2020(9): 19-23.
[13] KLUSKA M, KOMASIŃSKA M, JABŁOŃSKA J, et al. Challenges of HPLC determination of quinoline derivatives used in the treatment of malaria[J]. Journal of Liquid Chromatography & Related Technologies, 2018, 41(8): 451-457.
doi: 10.1080/10826076.2018.1448870
[14] KIM Y M, KIM J W, MOON H M, et al. Rapid quantification of N-methyl-2-pyrrolidone in polymer matrices by thermal desorption-GC/MS[J]. Analytical Sciences, 2017, 33(7): 821-824.
doi: 10.2116/analsci.33.821
[15] HOSAKA A, WATANABE A, WATANABE C, et al. Polymer-coated sample cup for quantitative analysis of semi-volatile phthalates in polymeric materials by thermal desorption-gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 2015, 1391(1): 88-92.
doi: 10.1016/j.chroma.2015.02.066
[16] 王强, 王静, 曹亚丽, 等. 气相色谱-质谱法研究聚氯乙烯的热裂解行为[J]. 塑料科技, 2012, 40(5): 93-95.
WANG Qiang, WANG Jing, CAO Yali, et al. Study on pyrolysis behavior of polyvinyl chloride by gas chromatography-mass spectrometry[J]. Plastic Science and Technology, 2012, 40(5): 93-95.
[17] 柘植新, 大谷肇, 渡边忠一. 聚合物的裂解气相色谱-质谱图集[M]. 北京: 化学工业出版社, 2016: 108-109.
TSUGE Shin, OHTANI Hajime, WATANABE Chuichi. Pyrolysis-GC/MS date book of synthetic polymers[M]. Beijing: Chemical Industry Press, 2016: 108-109.
[1] 张楚丹, 王锐, 王文庆, 刘燕燕, 陈睿. 阳离子改性阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2022, 43(12): 109-117.
[2] 安亦锦, 薛文良, 丁亦, 张顺连. 基于图像处理的纺织品耐摩擦色牢度评级[J]. 纺织学报, 2022, 43(12): 131-137.
[3] 赵伦玉, 隋晓锋, 毛志平, 李卫东, 冯雪凌. 气凝胶材料在纺织品上的应用研究进展[J]. 纺织学报, 2022, 43(12): 181-189.
[4] 方寅春, 陈吕鑫, 李俊伟. 阻燃超疏水涤/棉混纺织物的制备及其性能[J]. 纺织学报, 2022, 43(11): 113-118.
[5] 曹聪聪, 汤龙世, 刘元军, 赵晓明. 无机抗菌织物的研究进展[J]. 纺织学报, 2022, 43(11): 203-211.
[6] 王铭亮, 张慧乐, 岳晓丽, 陈慧敏. 基于数字图像相关法的纱线和织物微观变形测量[J]. 纺织学报, 2022, 43(11): 52-58.
[7] 程宁波, 缪东洋, 王先锋, 王朝晖, 丁彬, 俞建勇. 用于个人热湿舒适管理的功能纺织品研究进展[J]. 纺织学报, 2022, 43(10): 200-208.
[8] 肖渊, 李倩, 张威, 胡汉春, 郭鑫雷. 微喷印原电池置换成型织物基柔性导电线路的影响因素研究[J]. 纺织学报, 2022, 43(10): 89-96.
[9] 陈珺娴, 李伟萍, 付琪轩, 冯新星, 张华. 芳纶/阻燃粘胶/阻燃锦纶混纺织物制备及其性能[J]. 纺织学报, 2022, 43(09): 107-114.
[10] 杜欢政, 刘建成, 陆莎. 双碳目标下纺织产业的绿色创新与发展[J]. 纺织学报, 2022, 43(09): 120-128.
[11] 杨梦凡, 王潮霞, 殷允杰, 邱华. 棉织物的螺吡喃微胶囊印花及其光致变色性能[J]. 纺织学报, 2022, 43(09): 137-142.
[12] 杨辉宇, 周敬伊, 段子健, 徐卫林, 邓波, 刘欣. 原子层沉积在纺织品表面多功能改性研究进展[J]. 纺织学报, 2022, 43(09): 195-202.
[13] 熊坦平, 谭飞, 黄成, 阎克路, 邹妮, 王政, 叶敬平, 纪柏林. 氯胺接枝涤纶/锦纶超细纤维针织物的抗菌性能[J]. 纺织学报, 2022, 43(08): 101-106.
[14] 刘蛟, 陈韶娟, 吴韶华. 丝素蛋白/聚左旋乳酸纳米纤维纱线肌腱补片的制备及其性能[J]. 纺织学报, 2022, 43(08): 60-66.
[15] 张晓程, 周彦, 田卫国, 乔昕, 贾锋伟, 许丽丽, 张金明, 张军. 废旧棉/涤混纺织物的组分快速分离及其含量测定[J]. 纺织学报, 2022, 43(07): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!