纺织学报 ›› 2025, Vol. 46 ›› Issue (04): 109-118.doi: 10.13475/j.fzxb.20240800601

• 染整工程 • 上一篇    下一篇

聚六亚甲基双胍盐酸盐改性对棉织物耐日晒色牢度的影响

赵强强1, 王韩星1, 张奉轩1, 何瑾馨1, 周俊2, 周兆昌2, 董霞1()   

  1. 1.东华大学 化学与化工学院, 上海 201620
    2.浙江博聚新材料有限公司, 浙江 丽水 323000
  • 收稿日期:2024-08-05 修回日期:2024-12-26 出版日期:2025-04-15 发布日期:2025-06-11
  • 通讯作者: 董霞(1983—),女,副教授,博士。主要研究方向为生态印染加工技术及相关理论。E-mail:dongxia@dhu.edu.cn
  • 作者简介:赵强强(1987—),男,副教授,博士。主要研究方向为纺织品染色及精细化学品绿色合成。
  • 基金资助:
    国家自然科学基金面上项目(22378058)

Light fastness of dyed cotton fabrics modified with poly(hexamethylene biguanide) hydrochloride

ZHAO Qiangqiang1, WANG Hanxing1, ZHANG Fengxuan1, HE Jinxin1, ZHOU Jun2, ZHOU Zhaochang2, DONG Xia1()   

  1. 1. College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
    2. Zhejiang Boju New Materials Co., Ltd., Lishui, Zhejiang 323000, China
  • Received:2024-08-05 Revised:2024-12-26 Published:2025-04-15 Online:2025-06-11

摘要: 棉织物的阳离子改性是实现其活性染料无盐染色的重要方式,但阳离子改性棉织物的耐日晒色牢度通常较差。为此,采用阳离子聚合物聚六亚甲基双胍盐酸盐(PHMB)对棉织物改性,分析了阳离子改性剂的作用方式等因素对染色织物耐日晒色牢度的影响,初步探讨了阳离子改性棉织物耐日晒色牢度的提升方法。结果表明:PHMB改性棉织物的耐日晒色牢度与染料在纤维上的分布及染料的种类有关;织物颜色较浅时,染料用量对PHMB改性棉织物耐日晒色牢度的影响较传统染色织物更显著;氧气的存在会加快织物的褪色过程,可见光和紫外光均可导致织物的褪色;部分日晒牢度提升剂可将改性棉织物的耐日晒色牢度提高0.5级;采用较大用量的小分子阳离子改性剂3-氯-2-羟丙基三甲基氯化铵(CHPTAC)对棉织物进行改性并无盐染色时,染料在改性棉纤维上的分布较均匀,织物的耐日晒色牢度提升较明显。

关键词: 棉织物, 阳离子聚合物, 聚六亚甲基双胍盐酸盐, 活性染料, 无盐染色, 耐日晒色牢度, 日晒牢度提升剂

Abstract:

Objective The addition of a large amount of electrolytes during the dyeing process of cotton fabric with reactive dyes can cause environmental pollution. The cationization of cotton fabric is an effective way to realize salt-free dyeing during its reactive dyeing. Compared to small molecule modifiers, cotton fabrics modified with cationic polymers can achieve higher dye uptake and fixation rates at lower dosages. However, some cotton fabrics dyed with cationic-modified dyes exhibit poor light fastness. Therefore, it is essential to study the factors affecting the light fastness of these fabrics to improve their durability.

Method Poly(hexamethylene biguanide) hydrochloride (PHMB) was selected as cationic modifier for cotton fabric cationization and the fabric was subsequently salt-free dyed with reactive dyes. The study investigated the effects of several factors on the light fastness of the dyed fabrics. These factors included the type and amount of reactive dyes, cationic agents, light intensities, air components and light wavelengths. Light fastness was assessed by color fastness standard and the analysis of fiber cross-sectional photos. In addition, this study examined the effects of anti-solarization fastness agents on improving the light fastness of PHMB-modified and salt-free dyed cotton fabrics. The cotton fabric was modified with small molecule modifiers and salt-free dyed, and its light fastness was assessed and compared with that of PHMB-modified fabric.

Results The light fastness tests on cotton fabrics dyed with three primary color reactive dyes revealed that PHMB-modified and salt-free dyed cotton fabrics exhibited lower light fastness compared with the conventionally dyed fabrics and those fixed with PHMB. This reduction in light fastness was attributed to the difficulty of the large molecule modifier (PHMB) diffusing into the fibers, leading to uneven modification of the cotton fabrics and increased difficulty for reactive dyes to penetrate the fiber interior. All three primary color reactive dyes used were azo dyes, prompting further investigation into the influence of dye chromophore types on the light fastness of the dyed fabrics. It was found that the light fastness of PHMB-modified cotton fabrics dyed with reactive dyes containing chromophores such as phthalocyanine was comparable to that of conventionally dyed fabrics, while the light fastness of fabrics dyed with most types of azo reactive dyes was significantly lower. When the color of the fabric was weak, the dyeing depth had a more pronounced effect on the light fastness of PHMB-modified dyed fabrics than on conventionally dyed fabrics. This result confirmed that the high light fastness of PHMB-modified cotton fabrics dyed with C.I. Reactive Black 5 and C.I. Reactive Blue 21 was related to their higher dyeing depth. The fading of dyed fabrics accelerated with the increase of light intensities. The presence of oxygen increased the fading of dyed fabrics, and both visible and ultraviolet light could cause the fading of dyed fabrics. Methods to improve the light fastness of PHMB-modified dyed fabrics were also explored. Some types of anti-solarization fastness agents could increase the light fastness by 0.5 levels. Reactive dyes were more evenly distributed on cotton fabrics modified with small molecule modifiers (3-chloro-2-hydroxypropyl trimethyl ammonium chloride), leading to high light fastness of the dyed fabrics.

Conclusion The research findings indicate that the light fastness of PHMB-modified and dyed cotton fabrics is related to the distribution of dyes on the fibers and the type of dye used. PHMB-modified cotton fabrics dyed with reactive dyes with high light stability, such as phthalocyanine-containing dyes, exhibit good light fastness. When the color of the fabric is weak, the effect of dyeing depth on PHMB-modified dyed fabrics is more significant than that on conventional dyed fabrics. The fading of PHMB-modified dyed fabrics is faster in the presence of oxygen. And both visible and ultraviolet light can cause the fading of dyed fabrics. The anti-solarization fastness agents can increase the light fastness of some dyed fabrics by 0.5 levels, and fabrics modified with 3-chloro-2-hydroxypropyl trimethyl ammonium choride have higher light fastness after salt-free dyeing, but the amount of cationic agents used is relatively large and the utilization rate is low. Therefore, further improvement is needed in subsequent research.

Key words: cotton fabric, cationic polymer, poly(hexamethylene biguanide) hydrochloride, reactive dye, salt-free dyeing, light fastness, anti-solarization fastness agent

中图分类号: 

  • TS193.6

表1

阳离子剂的作用方式对耐日晒色牢度的影响"

试样使用的染料 耐日晒色牢度/级
传统染色 PHMB改性 PHMB固色
C.I.活性红195 5~6 4 5~6
C.I.活性黄145 6 4~5 6
C.I.活性蓝194 4~5 3~4 5

图1

不同阳离子剂作用方式的染色织物的纤维横截面照片"

表2

活性染料的结构类型对耐日晒色牢度的影响"

试样使用的
染料
耐日晒色牢度/级 分子量 母体类型
传统染色 PHMB改性
C.I.活性红195 5~6 4 1 136.31 单偶氮型
C.I.活性红24 6 4 788.07 单偶氮型
C.I.活性蓝194 4~5 3~4 1 205.38 双偶氮型
C.I.活性黑5 4~5 5 991.82 双偶氮型
C.I.活性蓝221 5~6 5~6 1 083.83 甲䐶型
C.I.活性蓝21 4~5 5 1 079.55 酞菁型
C.I.活性蓝198 5~6 5 1 492.84 噁嗪型
C.I.活性蓝19 6 5~6 626.55 蒽醌型
C.I.活性蓝49 5~6 3~4 882.19 蒽醌型

表3

活性染料用量对耐日晒色牢度的影响"

染料用量/
%(o.w.f)
耐日晒色牢度/级
使用C.I.活性红195 使用C.I.活性红24
传统染色 改性织物 传统染色 改性织物
0.5 4 1 5 1~2
1.0 4~5 3 5 3
1.5 5 3 5~6 4
2.0 5~6 4 6 4
2.5 5~6 4 6 4
3.0 5~6 4 6 4

表4

不同光照强度照射前后染色织物的色差"

光照强度/
(W·m-2)
试样的色差
使用C.I.活性红195 使用C.I.活性红24
500 0.40 0.73
1 000 0.50 0.89
1 500 0.75 1.06
2 000 1.63 1.38
3 000 2.20 1.89

表5

不同空气组分下光照前后染色织物的色差"

光照时间/
min
试样的色差
使用C.I.活性红195 使用C.I.活性红24
有氧 无氧 有氧 无氧
30 1.11 0.13 0.55 0.53
60 1.18 0.49 0.92 0.84
90 1.79 0.62 1.41 1.20
120 2.37 1.26 1.60 1.42

表6

不同光照波长下光照前后染色织物的色差"

光照时间/
min
试样的色差
使用C.I.活性红195 使用C.I.活性红24
可见光 紫外光 可见光 紫外光
30 0.08 0.64 0.36 0.17
60 0.24 0.77 0.71 0.20
90 0.76 1.37 0.93 0.26
120 1.36 1.51 1.09 0.42

表7

不同染色织物的耐日晒色牢度"

试样使用的
染料
耐日晒色牢度/级
传统染色 CHPTAC改性 PHMB改性
C.I.活性红195 5~6 5~6 4
C.I.活性红24 6 6 4
C.I.活性蓝194 4~5 5 3~4
C.I.活性蓝49 5~6 6 3~4

图2

不同染色织物的纤维横截面照片"

表8

不同日晒牢度提升剂整理后织物的耐日晒色牢度"

日晒牢度提升剂 耐日晒色牢度/级
C.I.活性
红195
C.I.活性
红24
C.I.活性
蓝194
C.I.活性
蓝49
空白 4 4 3~4 3~4
UV-328 4~5 4~5 3~4 3~4
UV-329 4~5 4~5 3~4 4
UV-9 4 4 3~4 3~4
UV-531 4 4~5 3~4 4
LS-770 4 4~5 3~4 3~4
JYK UV-130 4 4~5 3~4 3~4
JYK UV-132 4 4~5 3~4 3~4
UV-SUN CEL Liquid 4 4 3~4 3~4
[1] 毛乐意. 改性棉针织面料染色工艺研究[J]. 针织工业, 2018(10): 49-51.
MAO Leyi. Research on dyeing process of modified cotton knitted fabric[J]. Knitting Industries, 2018(10): 49-51.
[2] 郭静, 张红娟, 胡钒, 等. 非水介质体系下混碱对活性染料染色的影响[J]. 印染, 2022, 48(7): 12-15.
GUO Jing, ZHANG Hongjuan, HU Fan, et al. Effect of mixed alkali on reactive dyeing under non-aqueous media[J]. China Dyeing & Finishing, 2022, 48(7): 12-15.
[3] 王东伟, 房宽峻, 刘秀明, 等. 胺化活性红195/聚合物微球的制备及其在棉织物染色中的应用[J]. 纺织学报, 2022, 43(4): 90-96.
WANG Dongwei, FANG Kuanjun, LIU Xiuming, et al. Preparation of amino-modified Reactive Red 195/polymer nanospheres and its application on dyeing of cotton fabrics[J]. Journal of Textile Research, 2022, 43(4): 90-96.
[4] 刘添涛, 陈志华. 活性染料低盐和无盐染色技术[J]. 染整技术, 2023, 45(10): 1-9.
LIU Tiantao, CHEN Zhihua. Technology of low salt and salt free dyeing with reactive dyes[J]. Textile Dyeing and Finishing Journal, 2023, 45(10): 1-9.
[5] 吴伟, 纪柏林, 毛志平, 等. 活性及分散染料染色新技术[J]. 纺织学报, 2023, 44(5): 1-12.
WU Wei, JI Bolin, MAO Zhiping, et al. Review of new dyeing technologies for reactive dyes and disperse dyes[J]. Journal of Textile Research, 2023, 44(5): 1-12.
[6] 吴文胜, 李志伟, 黄鸿发, 等. 阳离子改性棉织物低盐低碱活性染色[J]. 印染助剂, 2022, 39 (10): 43-48.
WU Wensheng, LI Zhiwei, HUANG Hongfa, et al. Low salt and low alkali reactive dyeing of cationic modified cotton fabric[J]. Textile Auxiliaries, 2022, 39 (10): 43-48.
[7] 夏伟, 高月, 顾海, 等. CHPTAC改性棉的活性染料无盐深色染色[J]. 印染, 2018, 44(5): 27-31.
XIA Wei, GAO Yue, GU Hai, et al. Salt-free reactive dyeing of cotton fabric modified with CHPTAC in ultra-deep shades[J]. China Dyeing & Finishing, 2018, 44(5): 27-31.
[8] ZHANG T, ZHANG S, QIAN W, et al. Reactive dyeing of cationized cotton fabric: the effect of cationization level[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(36): 12355-12364.
[9] ZHANG M, JU B Z, ZHANG S F, et al. Synthesis of cationic hydrolyzed starch with high DS by dry process and use in salt-free dyeing[J]. Carbohydrate Polymers, 2007, 69(1): 123-129.
[10] 王生, 王熙蔚, 陆艺萱, 等. 壳聚糖季铵盐改性棉织物的无盐染色工艺研究[J]. 针织工业, 2023(6): 53-57.
WANG Sheng, WANG Xiwei, LU Yixuan, et al. Salt-free dyeing process of cotton fabric modified with chitosan quaternary ammonium salts[J]. Knitting Industries, 2023(6): 53-57.
[11] 韩学琴, 梁志光, 田军明. 活性染料无盐染色研究进展[J]. 广东化工, 2021, 48(15): 137-139.
HAN Xueqin, LIANG Zhiguang, TIAN Junming. Advance in study of salt-free dyeing of reactive dyes[J]. Guangdong Chemical Industry, 2021, 48(15): 137-139.
[12] 马威, 张淑芬, 具本植, 等. 高取代度阳离子淀粉改性棉纤维用于活性染料无盐染色的研究[J]. 染料与染色, 2011, 48(1): 19-23.
MA Wei, ZHANG Shufen, JU Benzhi, et al. A study on salt-free reactive dyeing of cotton being modified by cationized starch with high degrees of substitution[J]. Dyestuffs and Coloration, 2011, 48(1): 19-23.
[13] AKTEK T, MILLAT A K M M. Salt free dyeing of cotton fiber-a critical review[J]. International Journal of Textile Science, 2017, 6(2): 21-33.
[14] NIU T, WU Y, ZHAI X, et al. Investigation on multifunctional modification of cotton fabrics for salt-free dyeing, resisting crease and inhibiting bacteria[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022. DOI: 10.1016/j.colsurfa.2022.129131.
[15] WANG W Y, CHIOU J C, CHEN W X, et al. A salt-free, zero-discharge and dyebath-recyclable circular coloration technology based on cationic polyelectrolyte complex for cotton fabric dyeing[J]. Cellulose, 2022, 29(2): 1249-1262.
[16] WANG W Y, KAN C W. An eco-friendly dyeing method: bromophenol blue (BPB) applied for dyeing cotton fabrics coated with cationic finishing agents[J]. Cellulose, 2020. DOI: 10.1007/s10570-020-03375-4.
[17] XIA J, ZHANG C, LIU X, et al. Efficient cationization of cotton fabric via oxidative pretreatment for salt-free reactive dyeing with low chemical consumption[J]. Green Chemistry, 2022, 24(23): 9180-9190.
[18] 戴萍, 滕兴华, 蔡雅楠, 等. 改性棉织物的南瓜色素天然染料染色[J]. 印染, 2023, 49(3): 46-49.
DAI Ping, TENG Xinghua, CAI Yanan, et al. Modified cotton dyeing with natural colorants extracted from pumpkin[J]. China Dyeing & Finishing, 2023, 49(3): 46-49.
[19] 田媛. 影响耐光色牢度试验结果的因素探究[J]. 纺织标准与质量, 2023(6): 50-53.
TIAN Yuan. Exploration of factors affecting the results of light fastness test[J]. Textile Testing and Standard, 2023(6): 50-53.
[20] 胡蝶, 张婷婷, 胡涵昌, 等. 活性染料在棉纤维上的扩散性能及其影响因素研究[J]. 纤维素科学与技术, 2020, 28(4): 38-45.
HU Die, ZHANG Tingting, HU Hanchang, et al. Diffusion performance of reactive dyes on cotton fiber and the influencing factors[J]. Journal of Cellulose Science and Technology, 2020, 28(4): 38-45.
[21] 魏丽丽. 影响活性染料染色织物的日晒牢度因素分析[J]. 染料与染色, 2007(3): 17-19, 40.
WEI Lili. Analysis of the factors affecting light fastness of the fabrics with reactive dyes[J]. Dyestuffs and Coloration, 2007(3): 17-19, 40.
[22] 张海燕, 钱涛, 余培泽, 等. C.I.活性黑5染色棉织物的光汗复合褪色机理[J]. 浙江理工大学学报(自然科学版), 2021, 45(6): 763-772.
ZHANG Haiyan, QIAN Tao, YU Peize, et al. The discoloration mechanism of cotton fabrics dyed with C.I.Reactive Black 5 under light perspiration conditions[J]. Journal of Zhejiang Sci-Tech University(Natural Sciences Edition), 2021, 45(6): 763-772.
[23] 蔡为, 陆坤泉, 刘念. 提高活性染料染色织物耐汗/光色牢度的方法[J]. 现代丝绸科学与技术, 2015(2): 73-75.
CAI Wei, LU Kunquan, LIU Nian. Methods to improving the sweat/color fastness of fabrics dyed with reactive dyes[J]. Modern Silk Science & Technology, 2015(2): 73-75.
[24] 梁天宇, 刘军, 丁克毅. 醛基型三苯二噁嗪活性染料的合成与应用[J]. 中国皮革, 2017, 46(8): 13-19.
LIANG Tianyu, LIU Jun, DING Keyi. Synthesis and application of triphenodioxazine reactive dye with aldehyde as reactive group[J]. China Leather, 2017, 46(8): 13-19.
[25] 朱华. 浅谈活性染料耐日晒色牢度的影响因素[J]. 印染助剂, 2008(3): 5-8.
ZHU Hua. Presentation of the factors affecting the sunlight fastness of the reactive dyes[J]. Textile Auxiliaries, 2008(3): 5-8.
[26] 宋心远, 沈煜如. 活性染料的色牢度及其影响因素[J]. 印染, 2006(13): 40-44.
SONG Xinyuan, SHEN Yuru. Color fastness of reactive dyes and its influencing factors[J]. China Dyeing & Finishing, 2006(13): 40-44.
[27] 马威, 姜雪, 唐炳涛, 等. 光稳定剂在提高染料光牢度中的应用[J]. 中国科技论文在线, 2010, 5(12): 938-945.
MA Wei, JIANG Xue, TANG Bingtao, et al. Application of light stabilizers in the improvement of light fastness of dyes[J]. China Science Paper, 2010, 5(12): 938-945.
[28] 杨环. 光活性化合物对蒽醌系蓝色染料耐光色牢度的影响[D]. 上海: 东华大学, 2016: 11-12.
YANG Huan. Effect of optically active compounds on the fastness to light of anthraquinone blue dyes[D]. Shanghai: Donghua University, 2016: 11-12.
[29] PRUŚ S, KULPIŃSKI P, MATYJAS-ZGONDEK E, et al. The light fastness of the reactive dyes on cationized cellulose[J]. Journal of Natural Fibers, 2023. DOI: 10.1080/15440478.2023.2215995.
[30] 曾雪梅, 何雨霖, 余崇东, 等. 受阻胺光稳定剂的协同作用及研究进展[J]. 塑料科技, 2023, 51(8): 107-111.
ZENG Xuemei, HE Yulin, YU Chongdong, et al. Synergistic effect and research progress of hindered amine light stabilizerss[J]. Plastics Science and Technology, 2023, 51(8): 107-111.
[31] 曹机良, 陈艺佳, 李峻, 等. 改性棉织物一浴无盐荧光染色及防紫外线整理[J]. 针织工业, 2018(9): 33-36.
CAO Jiliang, CHEN Yijia, LI Jun, et al. One bath salt- free fluorescent dyeing and anti-UV finishing of modified cotton fabric[J]. Knitting Industries, 2018(9): 33-36.
[1] 黄春月, 黄鑫, 杜海娟, 徐文杰, 杨雪梅, 万科研, 李旭, 高杰. 钼氧簇复合物整理剂制备及其整理棉织物的防紫外线性能[J]. 纺织学报, 2025, 46(04): 138-145.
[2] 廖喜林, 曾媛, 刘淑萍, 李亮, 李淑静, 刘让同. 磷/氮/硅复配协效阻燃棉织物制备及其性能[J]. 纺织学报, 2025, 46(03): 151-157.
[3] 张洁, 郭鑫源, 关晋平, 程献伟, 陈国强. 磷/氮阻燃剂原位沉积对棉织物的耐久阻燃改性[J]. 纺织学报, 2025, 46(02): 180-187.
[4] 袁华彬, 王沂沨, 王家朋, 向永翾, 陈国强, 邢铁玲. 基于山嵛酸和ZIF-8改性的超疏水防结冰棉织物[J]. 纺织学报, 2025, 46(02): 197-206.
[5] 崔芳, 张鑫卿, 殷斐, 李大伟, 雷苗苗, 谢志勇. 基于泡沫法给碱的粘胶织物活性红24无尿素印花[J]. 纺织学报, 2025, 46(02): 138-144.
[6] 巢探宇, 叶韵, 李娜, 廖思含, 马琪凯, 崔莉. 基于脂肪酶固定化的棉织物易去油污整理及其应用[J]. 纺织学报, 2025, 46(01): 130-137.
[7] 李万新, 舒大武, 安芳芳, 韩博, 任支刚, 单巨川. 碳化钛与三价铁离子协同过硫酸钠对活性染料废水的降解[J]. 纺织学报, 2025, 46(01): 138-147.
[8] 武浩, 周嫦娥, 高振清, 冯嘉禾. 基于还原-氧化体系的活性染料染色棉织物剥色[J]. 纺织学报, 2024, 45(12): 128-136.
[9] 王心雨, 郭明明, 张乐乐, 郑伟杰, AMJAD Farooq, 王宗乾. 耐久性抗菌超疏水棉织物的制备及其性能[J]. 纺织学报, 2024, 45(11): 170-177.
[10] 肖渊, 童垚, 胡呈安, 武贤军, 杨磊鹏. 导电复合材料涂覆式全织物基柔性压阻传感器制备[J]. 纺织学报, 2024, 45(10): 152-160.
[11] 张应秀, 徐丽慧, 潘虹, 姚程健, 赵红, 窦梅冉, 沈勇, 赵诗怡. 基于甘蔗渣多孔碳的超疏水棉织物制备及其性能[J]. 纺织学报, 2024, 45(10): 161-169.
[12] 赵强, 刘正江, 高晓平, 张云婷, 张宏. 蒙脱土协同TiO2整理棉织物的功能性[J]. 纺织学报, 2024, 45(09): 121-128.
[13] 刘慧, 李平, 朱平, 刘云. γ-脲基丙基三乙氧基硅烷/苯基膦酸阻燃抗菌棉织物的制备及其性能[J]. 纺织学报, 2024, 45(08): 205-214.
[14] 赵攀, 谭文丽, 赵心蕊, 付金凡, 刘成显, 袁久刚. 基于离子液体微溶焊接的可降解薄膜制备及其性能[J]. 纺织学报, 2024, 45(08): 89-98.
[15] 李旭, 刘祥吉, 靳鑫, 杨承昊, 董朝红. 耐久高效磷/氮协同阻燃剂的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(07): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!