纺织学报 ›› 2025, Vol. 46 ›› Issue (07): 1-9.doi: 10.13475/j.fzxb.20241004601

• 纤维材料 •    下一篇

低共熔溶剂剥离法制备丝素蛋白纳米原纤及其成膜性能

江淑宁1, 杨海伟1,2(), 李长龙1, 郑天亮1, 王宗乾1   

  1. 1 安徽工程大学 纺织服装学院, 安徽 芜湖 241000
    2 中国科学技术大学 化学与材料科学学院, 安徽 合肥 230026
  • 收稿日期:2024-10-22 修回日期:2025-03-27 出版日期:2025-07-15 发布日期:2025-08-14
  • 通讯作者: 杨海伟(1991—),男,讲师,博士。研究方向为蚕丝基功能材料设计与应用。E-mail:yanghaiwei@ahpu.edu.cn
  • 作者简介:江淑宁(1999—),女,硕士生。主要研究方向为生物质多功能材料。
  • 基金资助:
    安徽省自然科学基金项目(2308085ME144);安徽省高效协同创新项目(GXXT-2023-035);安徽省重点研究与开发计划项目(2023t07020001);芜湖市科技计划项目(2023yf002)

Nanofibrils exfoliated from silk fibroin by deep eutectic solvent and its film-forming properties

JIANG Shuning1, YANG Haiwei1,2(), LI Changlong1, ZHENG Tianliang1, WANG Zongqian1   

  1. 1 School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    2 School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
  • Received:2024-10-22 Revised:2025-03-27 Published:2025-07-15 Online:2025-08-14

摘要:

为深入探究丝素蛋白纳米原纤(SNF)的绿色高效提取工艺并得到高性能丝素蛋白(SF)膜材料,采用低共熔溶剂(DES)剥离SF纤维提取SNF,系统研究了DES剥离SF纤维的工艺调控,分析了剥离进程中SF纤维微观形貌和分子构象的变化规律,研究了DES剥离的作用机制,并对其微观形貌、化学结构和热稳定性能进行测试与表征。结果表明:氯化胆碱/尿素DES对SF纤维具有较强的剥离能力,在优化的工艺参数下,经超声波和离心处理可提取直径在20~107 nm区间分散稳定的SNF,且DES可回收,5次循环后的回收率在90%以上;DES主要破坏无定形区域的SF分子网络,导致SF纤维溶胀和松动,进而被剥离成纳米原纤,并保留了原有的β-折叠晶体结构;制备的SNF具有较高的透光率、紧密排列的纳米原纤网络结构,相比再生SF膜,其具有高断裂强度、高韧性和优良的热稳定性。

关键词: 丝素蛋白纳米原纤, 低共熔溶剂, 工艺调控, 剥离机制, 纳米原纤膜

Abstract:

Objective The conventional dissolution-regeneration process destroys the multiscale hierarchical structure of silk fibroin (SF) fibers, resulting in inferior mechanical properties and limited applications of the regenerated SF films. This study aims to extract silk fibroin nanofibrils (SNF) retaining the pristine meso-structure by the green deep eutectic solvent (DES) exfoliation of SF fibers for the preparation of high-strength SNF films.

Method The DESs with different acidities and alkalinities were prepared by mixing choline chloride (ChCl) with urea (Ur), lactic acid (LA), and glycerol (Gly) under heating. The SF fibers were exfoliated using each of the three types of DES, and an optimal DES system was selected based on the exfoliation effect. On this basis, the temperature and time of DES exfoliation of SF fibers were optimized according to the yield of SNF. The recyclability and reusability of DES were also evaluated. Furthermore, the micro-morphology, molecular conformation, and crystal structure of SF fibers were investigated before and after exfoliation. Then, an evolution model of SF fibers to SNF during the exfoliation was constructed to elucidate the molecular mechanism of SF fibers exfoliated by DES. Meanwhile, SNF films were prepared by vacuum filtration. The microstructure, mechanical properties, and optical properties of the SNF films were characterized by scanning electron microscopy, universal testing machine, and UV-Vis spectrophotometer.

Results Compared to ChCl/LA and ChCl/Gly DES, ChCl/Ur DES exhibited a stronger exfoliation capacity for SF fibers. After treatment with ChCl/Ur DES at 110 ℃ for 24 h, a higher yield (49.79%) of SNF was obtained by ultrasonic treatment and centrifugation. The diameters of the extracted SNF were in the range of 20-107 nm (average diameter of 57 nm), showing excellent dispersion stability. Additionally, the DES exhibited superior recyclability and reusability. After 5 cycles, the recovery rate of DES and the yield of SNF remained above 90% and 45%, respectively. The FT-IR spectrum analysis showed that DES mainly disrrupted the SF molecular network in the amorphous region, leading to a higher relative content of β-sheet structures in the SNF. The XRD results confirmed that DES weakened the interfacial interactions among the SF fibers and did not destroy their internal meso-structures. Consequently, the DES-treated SF fibers swelled and loosened, and were gradually exfoliated into micro-nano fibrils. Furthermore, more micro-nano fibrils were promoted to be converted into SNF by ultrasonic treatment. The SNF films prepared by the vacuum filtration assembly were optically transparent (above 87% transmittance) in the visible region (400-800 nm). SEM images showed that the SNF films had tightly arranged nanofibril networks and porous structures. Compared with the regenerated SF films, the SNF films demonstrated superior thermal stability and an increase in breaking strength and toughness of 68.19% and 410%, respectively.

Conclusion The ChCl/Ur DES displayed a strong exfoliation ability to SF fibers. Under the optimal exfoliation process (110 ℃, 24 h) conditions, SNF with high yield and dispersion stability could be extracted after sonication and centrifugation. In addition, DES had satisfactory recyclability and reusability, demonstrating green and sustainable advantages. During the DES exfoliation, DES mainly destroyed the SF molecular network in the amorphous region, leading to the swelling and loosening of the SF fibers, which were then exfoliated into nanofibrils and retained the original β-sheet crystal structures. As a result, the prepared SNFs featured high light transmittance, tightly arranged nanofibril networks, and porous structures. More importantly, SNF films exhibited superior mechanical properties compared to regenerated SF films. This study provides an experimental basis for the green and efficient extraction of SNF and the construction of high-performance silk-based film materials.

Key words: silk fibroin nanofibril, deep eutectic solvent, process optimization, exfoliation mechanism, nanofibril film

中图分类号: 

  • TS141

图1

DES剥离SF纤维的工艺流程示意图"

图2

不同DES对SF纤维的剥离效果"

图3

DES剥离温度和时间对SNF分散液透光性的影响"

图4

DES的回收对剥离工艺的影响"

图5

SNF的微观形貌和分散稳定性表征"

图6

SF纤维和SNF的分子构象表征"

图7

DES剥离过程中SF纤维的微观形貌变化"

图8

DES剥离过程中SF纤维向SNF演变的历程"

图9

SNF膜的制备与形貌表征"

图10

SNF膜和再生SF膜的力学性能和热稳定性"

表1

SNF膜和再生SF膜的断裂强度与韧性"

膜类型 断裂强度/MPa 拉伸韧性/(MJ·m-3)
再生SF膜 21.16±2.09 0.10±0.03
SNF膜 35.59±1.24 0.51±0.01
[1] YANG H, WANG P, YANG Q, et al. Superelastic and multifunctional fibroin aerogels from multiscale silk micro-nanofibrils exfoliated via deep eutectic solvent[J]. International Journal of Biological Macromolecules, 2023, 224: 1412-1422.
doi: 10.1016/j.ijbiomac.2022.10.228 pmid: 36550790
[2] LI C, WU J, SHI H, et al. Fiber-based biopolymer processing as a route toward sustainability[J]. Advanced Materials, 2022. DOI: 10.1002/adma.202105196.
[3] WANG Q, LING S, YAO Q, et al. Observations of 3 nm silk nanofibrils exfoliated from natural silkworm silk fibers[J]. ACS Materials Letters, 2020, 2 (2): 153-160.
[4] HUI Z, ZHANG L, REN G, et al. Green flexibleelectronics: natural materials, fabrication, and applications[J]. Advanced Materials, 2023. DOI: 10.1002/adma.202211202.
[5] SAHOO J K, HASTURK O, FALCUCCI T, et al. Silk chemistry and biomedical material designs[J]. Nature Reviews Chemistry, 2023, 7 (5): 302-318.
doi: 10.1038/s41570-023-00486-x pmid: 37165164
[6] 王宗乾, 杨海伟, 王邓峰. 脱胶对蚕丝纤维的溶解及丝素蛋白性能的影响[J]. 纺织学报, 2018, 39 (4): 69-76.
WANG Zongqian, YANG Haiwei, WANG Dengfeng. Influence of degumming on solution of silk fiber and property of fibroin[J]. Journal of Textile Research, 2018, 39 (4): 69-76.
[7] WANG Z, YANG H, LI W, et al. Effect of silk degumming on the structure and properties of silk fibroin[J]. The Journal of The Textile Institute, 2019, 110(1): 134-140.
[8] WANG Z, YANG H, ZHU Z. Study on the blends of silk fibroin and sodium alginate: hydrogen bond formation, structure and properties[J]. Polymer, 2019, 163: 144-153.
[9] WANG Y, YANG Z, JIA B, et al. Natural deep eutectic solvent-assisted construction of silk nanofibrils/boron nitride nanosheets membranes with enhanced heat-dissipating efficiency[J]. Advanced Science, 2024. DOI: 10.1002/advs.202403724.
[10] ZHENG K, ZHONG J, QI Z, et al. Isolation of silk mesostructures for electronic and environmental applications[J]. Advanced Functional Materials, 2018. DOI: 10.1002/adfm.201806380.
[11] CHENG B, LEI Z, WU P. Bio-derived crystalline silk nanosheets for versatile macroscopic assemblies[J]. Nano Research, 2022, 15 (6): 5538-5544.
[12] SHI X, WANG Z, LIU S, et al. Scalable production of carboxylated cellulose nanofibres using a green and recyclable solvent[J]. Nature Sustainability, 2024, 7(3): 315-325.
[13] HANSEN B B, SPITTLE S, CHEN B, et al. Deep eutectic solvents: a review of fundamentals and applications[J]. Chemical Reviews, 2020, 121 (3): 1232-1285.
[14] TAN X, ZHAO W, MU T. Controllable exfoliation of natural silk fibers into nanofibrils by protein denaturant deep eutectic solvent: nanofibrous strategy for multifunctional membranes[J]. Green Chemistry, 2018, 20 (15): 3625-3633.
[15] TAN X, WANG Y, DU W, et al. Top-down extraction of silk protein nanofibers by natural deep eutectic solvents and application in dispersion of multiwalled carbon nanotubes for wearable sensing[J]. ChemSusChem, 2020, 13 (2): 321-327.
doi: 10.1002/cssc.201902979 pmid: 31729788
[16] HU Y, LIU L, YU J, et al. Preparation of natural multicompatible silk nanofibers by green deep eutectic solvent treatment[J]. ACS Sustainable Chemistry & Engineering, 2020, 8 (11): 4499-4510.
[17] 杨其亮, 杨海伟, 王邓峰, 等. 超疏水弹性丝素蛋白纤维气凝胶的制备及其吸油性能[J]. 纺织学报, 2023, 44 (9): 1-10.
YANG Qiliang, YANG Haiwei, WANG Dengfeng, et al. Fabrication and oil absorbency of superhydrophobic and elastic silk fibroin fibrils aerogel[J]. Journal of Textile Research, 2023, 44 (9): 1-10.
[18] HU Y, LIU L, YU J, et al. Preparation of silk nanowhisker-composited amphoteric cellulose/chitin nanofiber membranes[J]. Biomacromolecules, 2020, 21 (4): 1625-1635.
doi: 10.1021/acs.biomac.0c00223 pmid: 32212687
[19] SUN H, ZHANG M, WANG B, et al. Intrinsically self-driven humidity actuators based on silk nanofibers exfoliated using a deep eutectic solvent[J]. ACS Sustainable Chemistry & Engineering, 2024, 12 (18): 6870-6880.
[20] DENG M, PAN J, SUN H, et al. Utilization of deep eutectic solvent as a degumming protocol for raw silk: towards performance and mechanism elucidation[J]. International Journal of Biological Macromolecules, 2024. DOI: 10.1016/j.ijbiomac.2024.132770.
[21] HU Z, YAN S, LI X, et al. Natural silk nanofibril aerogels with distinctive filtration capacity and heat-retention performance[J]. ACS Nano, 2021, 15 (5): 8171-8183.
doi: 10.1021/acsnano.1c00346 pmid: 33848124
[22] YANG H, WANG Z, WANG M, et al. Structure and properties of silk fibroin aerogels prepared by non-alkali degumming process[J]. Polymer, 2020. DOI: 10.1016/j.polymer.2020.122298.
[23] 孙奕, 吴伟, 文飘, 等. 基于蒸腾驱动的柞蚕超纤纸电化学传感器的设计, 制备及其溶剂在线鉴别应用研究[J]. 高分子学报, 2024, 55 (8): 954-965.
SUN Yi, WU Wei, WEN Piao, et al. Design, preparation, and solvent identification application of Antheraea pernyi silk paper-based electrochemical sensor[J]. Acta Polymerica Sinica, 2024, 55 (8): 954-965.
[24] WANG Z, YI N, ZHENG Z, et al. Self-powered and degradable humidity sensors based on silk nanofibers and its wearable and human-machine interaction appli-cations[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2024.154443.
[25] 卜凡, 应丽丽, 李长龙, 等. 羽绒在乳酸/半胱氨酸低共熔溶剂中的溶解行为及其机制[J]. 纺织学报, 2023, 44 (10): 24-30.
doi: 10.13475/j.fzxb.20220409201
BU Fan, YING Lili, LI Changlong, et al. Dissolution behavior and mechanism of down in lactic acid/cysteine deep eutectic solvent[J]. Journal of Textile Research, 2023, 44 (10): 24-30.
doi: 10.13475/j.fzxb.20220409201
[26] LÜ L, HAN X, WU X, et al. Peeling and mesoscale dissociation of silk fibers for hybridization of electrothermic fibrous composites[J]. ACS Sustainable Chemistry & Engineering, 2019, 8 (1): 248-255.
[27] LING S, LI C, JIN K, et al. Liquid exfoliated natural silk nanofibrils: applications in optical and electrical devices[J]. Advanced Materials, 2016, 28 (35): 7783-7790.
[28] YANG H, WANG Z, WANG M, et al. Structure and properties of silk fibroin aerogels prepared by non-alkali degumming process[J]. Polymer, 2020. DOI: 10.1016/j.polymer.2020.122298.
[1] 李亿鸿, 蔡君怡, 诸葛晓洁, 吴东芮, 滕德英, 俞建勇, 丁彬, 李召岭. 羧基化纳米纤维素增强的柔性透明导电弹性体[J]. 纺织学报, 2025, 46(04): 11-19.
[2] 张蕙, 杨海伟, 金鲜花, 杨超, 王宗乾. 氯化胆碱低共熔溶剂在蚕丝绵片脱胶和辅助漂白中的应用[J]. 纺织学报, 2025, 46(04): 103-108.
[3] 李欢, 孟文俊, 张京, 姜哲, 卫艺敏, 周曼, 王强. 低共熔溶剂体系中的羊毛靛蓝染料染色[J]. 纺织学报, 2025, 46(03): 123-130.
[4] 尹祥, 朱恩清, 杨静, 杨海艳, 王大伟, 石纯, 史正军. 可纺性竹原纤维的脱胶工艺及其性能[J]. 纺织学报, 2024, 45(09): 106-112.
[5] 卜凡, 应丽丽, 李长龙, 王宗乾. 羽绒在乳酸/半胱氨酸低共熔溶剂中的溶解行为及其机制[J]. 纺织学报, 2023, 44(10): 24-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!