纺织学报 ›› 2025, Vol. 46 ›› Issue (04): 103-108.doi: 10.13475/j.fzxb.20240602301

• 染整工程 • 上一篇    下一篇

氯化胆碱低共熔溶剂在蚕丝绵片脱胶和辅助漂白中的应用

张蕙1, 杨海伟1, 金鲜花2, 杨超2, 王宗乾1()   

  1. 1.安徽工程大学 安徽省生态纺织印染创新中心, 安徽 芜湖 241000
    2.传化智联股份有限公司, 浙江 杭州 311215
  • 收稿日期:2024-06-12 修回日期:2024-11-27 出版日期:2025-04-15 发布日期:2025-06-11
  • 通讯作者: 王宗乾(1982—),男,教授,博士。主要研究方向为功能化结构纤维调控与成形技术。E-mail :wzqian@ahpu.edu.cn
  • 作者简介:张蕙(2000—),女,硕士生。主要研究方向为先进纤维及纺织印染加工技术。
  • 基金资助:
    安徽省重点研究与开发计划项目(202423i08050057);安徽省重点研究与开发计划项目(2023t07020001);安徽省自然科学基金项目(2308085ME144);安徽省高校协同创新项目(GXXT-2023-035);安徽省高校协同创新项目(GXXT-2022-027);国家先进印染技术创新中心科研基金项目(2022G-CJJ13)

Application of choline chloride deep eutectic solvent in degumming and auxiliary bleaching of silk sheets

ZHANG Hui1, YANG Haiwei1, JIN Xianhua2, YANG Chao2, WANG Zongqian1()   

  1. 1. Anhui Provincial Ecological Textile Printing and Dyeing Innovation Center, Anhui Polytechnic University,Wuhu, Anhui 241000, China
    2. Transfar Zhilian Co., Ltd., Hangzhou, Zhejiang 311215, China
  • Received:2024-06-12 Revised:2024-11-27 Published:2025-04-15 Online:2025-06-11

摘要: 为提高蚕丝绵片的脱胶效率和脱胶质量,将预先制备的4种不同组分氯化胆碱低共熔溶剂用于对蚕丝绵片的脱胶,并与碳酸钠、尿素脱胶蚕丝进行比较。采用超景深显微系统、傅里叶变换红外光谱仪、X射线衍射仪测试了脱胶蚕丝的形貌结构、化学及聚集态结构。结果表明:氯化胆碱/草酸二水合物低共熔溶剂用于蚕丝绵片的脱胶效果最佳,脱胶率为24.5%,该脱胶工艺中蚕丝纤维直径平均膨胀至原来的1.17倍;与非碱体系的尿素脱胶对比,蚕丝的脱胶率提升,脱胶时间缩短;与碳酸钠脱胶对比,蚕丝强力受损降低;红外光谱与X射线衍射曲线表明低共熔溶剂脱胶不影响蚕丝素聚集态结构;同时添加低共熔溶剂还有助于提升双氧水对蚕丝绵片的漂白白度。剖析脱胶机制认为,一方面缘于低共熔溶剂对蚕丝纤维具有优异的膨润作用,促进了丝胶组分的溶解去除,另一方面低共熔溶剂呈现酸性,对蚕丝素组分损伤弱,降低脱胶蚕丝纤维的强力损伤。

关键词: 低共熔溶剂, 蚕丝, 脱胶工艺, 漂白, 脱胶机制, 氯化胆碱

Abstract:

Objective Silk is an extremely important natural protein fiber, and degumming is an essential step in silk processing. The conventional degumming method has problems such as long degumming time and high pollution caused by degumming. It is hence necessary to develop a new degumming process so as to improve the degumming efficiency. In this study, the degumming mechanism of silk was analyzed based on the application of choline chloride/oxalic acid dihydrate deep eutectic solvent in the degumming and auxiliary bleaching of silk sheets.

Method Silk sheets were accurately weighed, and were immerged into choline chloride deep eutectic solvents with different concentrations, followed by magnetical stirring at 90 ℃ for 80 min and washing with deionized water and drying to a constant weight. The performance of the degummed silk was tested by the LB-48B fluorescence whiteness meter and the Datacolor 650 color matching instrument, and the best deep eutectic solvent degumming process was screened. The morphology and aggregate structure of the degummed silk were measured by the VHX-970F ultra-depth-of-field microscope system and the D8 ADVANCE X-ray diffractometer. On the other hand, the mechanical properties of sodium carbonate and deep eutectic solvent degummed silk sheets were compared. In order to improve the whiteness of degummed silk with deep eutectic solvent, a mass concentration of 5 g/L hydrogen peroxide was further used to bleach the degummed silk, and the properties of the bleached silk were analyzed.

Results The experimental results showed that the prepared choline chloride/oxalic acid dihydrate deep eutectic solvent had the best degumming effect on silk sheets, with the degumming condition of the degumming rate 24.5% at 90 ℃, 1∶50 and 80 min. Compared with choline chloride/ethylene glycol deep eutectic solvent and choline chloride/urea deep eutectic solvent, it was neutral and weakly alkaline, which was not conducive to the dissolution and removal of sericin. The apparent viscosity of choline chloride/oxalic acid deep eutectic solvent was larger, and its degumming effect was relatively poor. Compared with the urea and sodium carbonate degumming processes, urea degumming took a long time, while sodium carbonate degumming caused silk fibroin fiber damage failing to achieve the desired degumming effect. The standard deviation of the whiteness value of the degummed silk by the choline chloride/oxalic acid dihydrate deep eutectic solvent was relatively small, indicating that the choline chloride/oxalic acid dihydrate deep eutectic solvent degumming was more uniform, and the breaking strength of sodium carbonate degummed silk was decreased significantly with the increase of tensile force. Based on the swelling and dissolution of deep eutectic solvents, the sericin on the silk surface was removed, and the fiber diameter expanded 1.17 times over the original size. X-ray diffractometer and Fourier transform infrared spectrometer analyses revealed that the intensity of the β-fold structure peak of degummed silk was enhanced, the signal of the diffraction peak of silk I. structure was weakened, and the diffraction peak of silk II structure remained unchanged. Furthermore, the reflectivity and whiteness of the degummed silk after bleaching with hydrogen peroxide were improved.

Conclusion Choline chloride/oxalate dihydrate deep eutectic solvent has strong acidity, which has the best degumming effect for silk sheets, optimizes the degumming conditions, shortens the process flow and improves efficiency compared with urea degumming, and sodium carbonate degumming is easy to cause silk damage. Compared with silk sheets, the peak strength of the β-fold structure of degummed silk was enhanced, the signal of the diffraction peak of silk I. structure was weakened, and the diffraction peak of silk II structure was not changed. Due to the excellent swelling and dissolution effect of eutectic solvent, the swelling of silk fibers is promoted and the removal of sericin components is accelerated. At the same time, the effective interaction between fiber and hydrogen peroxide is enhanced, and the whiteness of degummed silk was further improved.

Key words: deep eutectic solvent, silk, degumming process, bleaching, degumming mechanism, choline chloride

中图分类号: 

  • TS143.3

表1

不同低共熔溶剂的pH值及其蚕丝的脱胶率"

样品编号 pH值 脱胶率/%
DES-1 6.75 11.5
DES-2 9.31 9.5
DES-3 1.25 23.0
DES-4 1.46 24.5

图1

不同脱胶工艺下蚕丝的脱胶率和白度"

图2

不同脱胶工艺蚕丝的强力曲线"

图3

脱胶前后蚕丝微观形貌变化"

图4

蚕丝绵片及脱胶蚕丝的红外光谱"

图5

蚕丝绵片及脱胶蚕丝的X射线衍射曲线"

图6

不同工艺处理蚕丝的反射率曲线"

图7

不同工艺处理蚕丝绵片的白度"

图8

蚕丝脱胶机制示意图"

[1] 张勇, 陆浩杰, 梁晓平, 等. 蚕丝基智能纤维及织物:潜力、现状与未来展望[J]. 物理化学学报, 2022, 38(9): 64-79.
ZHANG Yong, LU Haojie, LIANG Xiaoping, et al. Silk materials for intelligent fibers and textiles: potential, progress and future perspective[J]. Acta Physico-Chimica Sinica, 2022, 38(9): 64-79.
[2] WANG F, ZHANG Y Q. Effects of alkyl polyglyco-side(APG) on Bombyx mori silk degumming and the mechanical properties of silk fibroin fibre[J]. Materials Science and Engineering: C, 2017, 74: 152-158.
[3] SCHMIDT T, PUCHALLA N, SCHENDZIELORZ M, et al. Degumming and characterization of Bombyx mori and non-mulberry silks from Saturniidae silkworms[J]. Scientific Reports, 2023. DOI:10.1038/S41598-023-46474-5.
[4] WANG R, ZHU Y, SHI Z, et al. Degumming of raw silk via steam treatment[J]. Journal of Cleaner Production, 2018, 203: 492-497.
[5] 王宗乾, 杨海伟, 王邓峰. 脱胶对蚕丝纤维的溶解及丝素蛋白性能的影响[J]. 纺织学报, 2018, 39(4): 69-76.
WANG Zongqian, YANG Haiwei, WANG Dengfeng. Influence of degumming on solution of silk fiber and property of fibroin[J]. Journal of Textile Research, 2018, 39(4): 69-76.
[6] WANG Y L, LIANG Y Y, HUANG J C, et al. Proteomic analysis of silk fibroin reveals diverse biological function of different degumming processing from different origin[J]. Frontiers in Bioengineering and Biotechnology, 2022. DOI:10.3389/FBIOE.2021.777320.
[7] 王宗乾, 杨海伟, 周剑, 等. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(4): 9-14.
WANG Zongqian, YANG Haiwei, ZHOU Jian, et al. Effect of urea degumming on mechanical properties of silk fibroin aerogels[J]. Journal of Textile Research, 2020, 41(4): 9-14.
[8] EL-SAYED H, MOWAFI S, EL-FIKY A F, et al. Low temperature water-saving bio-degumming of natural silk using thermophilic protease[J]. Sustainable Chemistry and Pharmacy, 2022. DOI:10.1016/J.SCP.2022.100681.
[9] CHANDRAN K, KAIT C F, WILFRED C D, et al. A review on deep eutectic solvents: physiochemical properties and its application as an absorbent for sulfur dioxide[J]. Journal of Molecular Liquids, 2021. DOI:10.1016/J.MOLLIQ.2021.117021.
[10] YING L, ZHAO H, LI C, et al. Surface reconstruction and low-temperature dyeing performances of a poly(lactic acid) filament pretreated with a choline chlo-ride and oxalic acid deep eutectic solvent[J]. Macromolecules, 2022, 55(14): 6238-6246.
[11] DLUGOSZ O. Natural deep eutectic solvents in the synthesis of inorganic nanoparticles[J]. Materials, 2023. DOI:10.3390/MA16020627.
[12] 王一通, 龚立, 王菲菲, 等. 蚕茧丝素纳米纤维的绿色提取及结构调控研究[J]. 蚕业科学, 2022, 48(4): 332-339.
WANG Yitong, GONG Li, WANG Feifei, et al. Green extraction and structure regulation of silk fibroin nanofibers from silkworm cocoon[J]. Acta Sericologica Sinica, 2022, 48(4): 332-339.
[13] HUANG H, TANG Q, LIN G, et al. Anthraquinone-assisted deep eutectic solvent degumming of ramie fibers: evaluation of fiber properties and degumming performance[J]. Industrial Crops Products, 2022. DOI:10.1016/J.INDCROP.2022.115115.
[14] AHMED B, GWON J, THAPALIYA M, et al. Combined effects of deep eutectic solvent and microwave energy treatments on cellulose fiber extraction from hemp bast[J]. Cellulose, 2023, 30(5): 2895-2911.
[15] ANIS P, TOPRAK T, YENER E, et al. Investigation of the effects of environmentally friendly degumming methods on silk dyeing performance[J]. Textile Research Journal, 2019, 89(7): 1286-1296.
[16] LING S, QI Z, KNIGHT D P, et al. Synchrotron FTIR microspectroscopy of single natural silk fibers[J]. Biomacromolecules, 2011, 12(9): 3344-3349.
doi: 10.1021/bm2006032 pmid: 21790142
[17] KHAN M M R, TSUKADA M, GOTOH Y, et al. Physical properties and dyeability of silk fibers degummed with citric acid[J]. Bioresource Technology, 2010, 101(21): 8439-8445.
doi: 10.1016/j.biortech.2010.05.100 pmid: 20598526
[1] 李亿鸿, 蔡君怡, 诸葛晓洁, 吴东芮, 滕德英, 俞建勇, 丁彬, 李召岭. 羧基化纳米纤维素增强的柔性透明导电弹性体[J]. 纺织学报, 2025, 46(04): 11-19.
[2] 王浙峰, 蔡王丹, 李诗雅, 徐青艺, 张红霞, 祝成炎, 金肖克. 抗菌除臭复合功能机织物的服用性能[J]. 纺织学报, 2025, 46(03): 90-99.
[3] 李欢, 孟文俊, 张京, 姜哲, 卫艺敏, 周曼, 王强. 低共熔溶剂体系中的羊毛靛蓝染料染色[J]. 纺织学报, 2025, 46(03): 123-130.
[4] 杨鑫, 张昕, 潘志娟. 丝素纳米原纤增强再生丝素蛋白/聚乙烯醇纤维的结构与性能[J]. 纺织学报, 2024, 45(11): 1-9.
[5] 王勃翔, 徐航丹, 李佳, 林杰, 程德红, 路艳华. 柞蚕丝素纳米纤维温敏复合膜制备及其生物相容性[J]. 纺织学报, 2024, 45(09): 18-25.
[6] 尹祥, 朱恩清, 杨静, 杨海艳, 王大伟, 石纯, 史正军. 可纺性竹原纤维的脱胶工艺及其性能[J]. 纺织学报, 2024, 45(09): 106-112.
[7] 刘术, 侯腾, 周乐乐, 李祥龙, 杨斌. 桑蚕的强制牵伸抽丝及其纤维性能[J]. 纺织学报, 2024, 45(06): 11-15.
[8] 黄晴, 苏振岳, 周一帆, 刘青松, 李懿, 赵萍, 王鑫. 饲料与桑叶饲喂的家蚕蚕丝品质分析[J]. 纺织学报, 2024, 45(05): 1-9.
[9] 李曼丽, 季志浩, 龙柱, 王益峰, 金恩琪. 壳聚糖荧光防伪印花涂料的制备及其应用性能[J]. 纺织学报, 2024, 45(03): 114-121.
[10] 陈锟, 许晶莹, 郑怡倩, 李加林, 洪兴华. 丝网印刷还原氧化石墨烯改性蚕丝织物的导电与电热性能[J]. 纺织学报, 2024, 45(03): 122-128.
[11] 石路健, 宋亚伟, 谢汝义, 高志超, 房宽峻. 莱赛尔机织物防原纤化前处理工艺优化[J]. 纺织学报, 2023, 44(12): 96-105.
[12] 刘骏韬, 孙婷, 涂虎, 胡敏, 张如全, 孙雷, 罗霞, 纪华. 全棉水刺非织造布的等离子体冷堆脱脂漂白工艺响应面法优化[J]. 纺织学报, 2023, 44(11): 132-141.
[13] 卜凡, 应丽丽, 李长龙, 王宗乾. 羽绒在乳酸/半胱氨酸低共熔溶剂中的溶解行为及其机制[J]. 纺织学报, 2023, 44(10): 24-30.
[14] 谭婷, 李哲阳, 马明波, 周文龙. 天然绿色蚕丝抗氧化组分向皮肤迁移的特性研究[J]. 纺织学报, 2023, 44(10): 75-80.
[15] 何铠君, 沈加加, 刘国金. 石墨烯改性蚕丝的制备方法及其应用研究进展[J]. 纺织学报, 2023, 44(09): 223-231.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!