纺织学报 ›› 2025, Vol. 46 ›› Issue (08): 164-172.doi: 10.13475/j.fzxb.20250104401

• 染整工程 • 上一篇    下一篇

溶剂响应结构色织物的制备及其性能

段亚洲, 陶伟晗, 方寅春(), 李伟   

  1. 安徽工程大学 纺织服装学院, 安徽 芜湖 241000
  • 收稿日期:2025-01-16 修回日期:2025-04-29 出版日期:2025-08-15 发布日期:2025-08-15
  • 通讯作者: 方寅春(1986—),男,副教授,博士。主要研究方向为生态染整技术。E-mail:fangyinchun86@163.com
  • 作者简介:段亚洲(1999—),男,硕士生。主要研究方向为先进纤维及纺织印染加工技术。
  • 基金资助:
    聚合物分子工程国家重点实验室(复旦大学)开放基金项目(K2024-12);安徽工程大学校级科研项目(Xjky2022061)

Preparation of solvent-responsive structural colored fabrics and their properties

DUAN Yazhou, TAO Weihan, FANG Yinchun(), LI Wei   

  1. School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
  • Received:2025-01-16 Revised:2025-04-29 Published:2025-08-15 Online:2025-08-15

摘要: 为赋予结构色纺织品智能响应的功能,以苯乙烯(St)、甲基丙烯酸甲酯(MMA)和丙烯酰胺(AM)为单体,通过无皂乳液聚合法合成了含亲水链段的聚(苯乙烯-甲基丙烯酸甲酯-丙烯酰胺)(P(St-MMA-AM))微球。探讨了单体添加比例对微球粒径的影响,将P(St-MMA-AM)微球通过雾化沉积在涤纶织物上形成结构色,制备出具有溶剂响应功能的结构色织物。研究了结构色织物的颜色性能以及对不同溶剂的响应性,同时分析了结构色织物的色牢度、透气性和柔软性等性能。结果表明:通过改变单体比例合成得到的5种不同粒径的P(St-MMA-AM)微球,可在涤纶织物上形成粉红色、绿色、天蓝色、蓝色和紫色5种不同的结构色;当结构色织物被水或无水乙醇润湿时,可在1~2 s内发生颜色变化;当溶剂完全蒸发后,结构色织物可恢复初始颜色,表现出可逆的溶剂响应功能;借助聚丙烯酸酯(PA)黏合剂,结构色织物可获得较好的耐摩擦和耐水洗色牢度;结构色织物的折皱回复性能与原织物相比未受到影响,其柔软性和透气性能略微下降,但不会对其物理性能产生明显的影响。

关键词: 结构色, 光子晶体, 溶剂响应, 聚合物微球, 智能响应纺织品

Abstract:

Objective Compared with chemical color, photonic crystals (PCs) structural color is controlled by external stimuli, transforming stimuli signals to facilitate visible color change. Solvent-response PCs structural colors are easy to achieve and hence are popularly used with convenience, and hence are extensively studied. However, most of the solvent-responsive PCs structural colors are constructed on flat substrates and based on hydrogel material. There are few studies on constructing solvent-responsive structural colors on the flexible fabrics, because it is more difficult to obtain uniform and stable structural color coatings on the rough and deformable surface. In this paper, polystyrene-methyl methacrylate-acrylamide (P(St-MMA-AM))microspheres containing hydrophilic chains were synthesized to construct structural colors with solvent-responsive on fabrics, aiming for creation of smart responsive structural color textiles.

Method P (St-MMA-AM) microspheres containing hydrophilic chain were synthesized by soap-free emulsion polymerization using styrene (St), methyl methacrylate (MMA) and acrylamide (AM) as monomers. The influence of monomer ratio on particle size of the microspheres was studied. P(St-MMA-AM) microspheres were atomized and deposited on polyester woven fabric to form structural color with solvent responsiveness. The color properties and solvent response properties of different solvents of the structural colored fabrics were studied. The color fastness and physical properties of the structural colored fabric were also studied.

Results P(St-MMA-AM) polymer microspheres with hydrophilic chains were successfully synthesized through soap-free emulsion polymerization. By changing the mass ratios of the monomers, P(St-MMA-AM) microspheres with different particle sizes of 392.7, 384.1, 358.6, 344.6 nm, and 322.4 nm were obtained, accordingly five different structural colors of pink, green, blue, light blue and purple were achieved on the fabrics by atomized deposition of these P(St-MMA-AM) microspheres. When wetted with water or ethanol, these structural colored fabrics could change their colors to fuchsia, yellow-green, dark green, cobalt blue, and dark blue, respectively, within 1-2 s. Once the solvent was evaporated, the five structural colors would revert to their original colors. The wavelengths corresponding to the maximum reflectance (λmax) of the five structural colors on the fabric were 590, 510, 460, 430 nm, and 410 nm respectively. After being wetted by water, the λmax of the five structural colors shifted to 390, 530, 490, 450 nm, and 440 nm, which could return to their initial values after the water evaporated, demonstrating excellent solvent-reversible response performance. Both single-color and multi-color patterned structural colored fabrics exhibited solvent responsiveness, showing potential for the preparation of patterned fabrics with special responsiveness. There was no obvious color change of the structural colored fabrics before and after rubbing, except for the decreasing of the maximum reflectance λmax by only 0.22% compared to that before rubbing. After washing, the colors of the structural colored fabrics remained almost the same as they were before, and the maximum reflectance decreased by only 0.33%, indicating good rubbing and washing color fastness, which could be attributed to the fixation of the microspheres on the fabric by the polyacrylate binder. Compared with the original fabric, the wrinkle recovery performance of the structural colored fabric remained unchanged, and there was a slight decrease in softness and air permeability, demonstrating that the physical properties of structural colored fabrics were slightly influenced.

Conclusion In this study, P(St-MMA-AM) microspheres with five different particle sizes were successfully prepared by adjusting the monomer mass ratio, which formed five different structural colors i.e. pink, green, blue, light blue and purple on polyester fabrics through atomized deposition. The structural color fabrics showed fast solvent-responsive performance, changing color within 1-2 s after wetting by water and ethanol. After solvent evaporation, the five structural colors restored to their original colors, showing the excellent solvent reversible response performance. The structural colored fabrics also had good rubbing and washing colorfastness. The physical properties of the structural colored fabrics were slightly influenced compared with the original fabrics. This study provides an experimental basis for the development of smart responsive structural color textiles.

Key words: structural color, photonic crystal, solvent response, polymer microsphere, intelligent responsive textile

中图分类号: 

  • TS193.6

表1

不同单体质量比制备的P(St-MMA-AM)聚合物微球"

样品编号 不同单体质量/g
St MMA AM
M-PSMA1 10 4 2
M-PSMA2 8 3 2
M-PSMA3 6 4 2
M-PSMA4 6 3 2
M-PSMA5 4 3 2

图1

St、MMA、AM和P(St-MMA-AM)的红外光谱图"

图2

P(St-MMA-AM)微球粒径分布"

图3

P(St-MMA-AM)结构色织物不同放大倍数的SEM照片"

图4

P(St-MMA-AM)结构色织物经水润湿前后及水分蒸发后照片"

图5

P(St-MMA-AM)结构色织物经水润湿前后及水分蒸发后的反射光谱"

图6

P(St-MMA-AM)结构色织物经乙醇润湿前后照片"

图7

结构色织物(PSMA2)重复不同次数水润湿-蒸发循环后的照片及反射光谱"

图8

P(St-MMA-AM)图案化结构色织物经水润湿前后及水分蒸发后的照片"

图9

P(St-MMA-AM)结构色织物不同角度的照片"

图10

P(St-MMA-AM)结构色织物的耐摩擦色牢度"

图11

水洗前后结构色织物照片及其反射光谱"

表2

结构色织物的物理性能"

试样 硬挺度(经向) 硬挺度(纬向) 折皱回复角/(°) 透气率/(mm·s-1)
弯曲长度/cm 抗弯刚度/(mN·cm) 弯曲长度/cm 抗弯刚度/(mN·cm) 经向 纬向
原织物 3.87 1.87 4.24 2.07 123.4 110.5 39.979±0.405
结构色织物 5.42 2.64 5.68 2.76 122.5 119.9 37.144±0.078
[1] QIAN N, HU J, HUANG S, et al. Patterned photonic actuators with dynamic shape‐morphing and color‐changing capabilities fabricated by athermal embossing technology[J]. Angewandte Chemie International Edition, 2024. DOI:10.1002/anie.202406534.
[2] HU Y, YU S, WEI B, et al. Stimulus-responsive nonclose-packed photonic crystals: fabrications and applications[J]. Materials Horizons, 2023, 10(10): 3895-3928.
[3] 顾佳, 张振雄, 韩颖, 等. 基于光子晶体结构生色纤维的研究进展[J]. 纺织学报, 2023, 44(4):212-221.
GU Jia, ZHANG Zhenxiong, HAN Ying, et al. Research and application of structural color fibers with photonic crystals[J]. Journal of Textile Research, 2023, 44(4): 212-221.
[4] KIM J B, LEE S Y, LEE J M, et al. Designing structural-color patterns composed of colloidal arrays[J]. ACS Applied Materials & Interfaces, 2019, 11(16): 14485-14509.
[5] GONG X, HOU C, ZHANG Q, et al. Solvatochromic structural color fabrics with favorable wearability properties[J]. Journal of Materials Chemistry C, 2019, 7(16): 4855-4862.
[6] ARMSTRONG E, O'DWYER C. Artificial opal photonic crystals and inverse opal structures-fundamentals and applications from optics to energy storage[J]. Journal of Materials Chemistry C, 2015, 3(24): 6109-6143.
[7] 史芷丞, 张玉, 于鸿, 等. 仿生结构生色技术及其在纺织领域应用的研究进展[J]. 纺织学报, 2024, 45(8): 241-249.
SHI Zhicheng, ZHANG Yu, YU Hong, et al. Research progress of bionic structure color-generating technology and its application in textile field[J]. Journal of Textile Research, 2024, 45(8): 241-249.
[8] 周常通. 溶剂响应双反蛋白石光子晶体生色材料的构筑及性能研究[D]. 大连: 大连理工大学, 2022:1-20.
ZHOU Changtong. Preparation of structural color materials for solvent-responsive double-Inverse opal photonic crystals and their properties[D]. Dalian: Dalian University of Technology, 2022:1-20.
[9] ZHANG L, LI Y, LI M, et al. Research progress of responsive photonic crystal materials[J]. Mod Silk Sci Technol, 2021, 36(3): 36-40.
[10] WANG W, ZHOU Y, YANG L, et al. Stimulus‐responsive photonic crystals for advanced security[J]. Advanced Functional Materials, 2022. DOI:10.1002/adfm.202204744.
[11] WEN X, LU X, WEI C, et al. Bright, angle-independent, solvent-responsive, and structurally colored coatings and rewritable photonic paper based on high-refractive-index colloidal quasi-amorphous arrays[J]. ACS Applied Nano Materials, 2021, 4(9): 9855-9865.
[12] GUO M, YU X Q, ZHAO J, et al. Versatile titanium dioxide inverse opal composite photonic hydrogel films towards multi-solvents chip sensors[J]. Sensors and Actuators B: Chemical, 2021. DOI:10.1016/j.snb.2021.130639.
[13] DU X, LI T, LI L, et al. Water as a colorful ink: transparent, rewritable photonic coatings based on colloidal crystals embedded in chitosan hydrogel[J]. Journal of Materials Chemistry C, 2015, 3(15): 3542-3546.
[14] XIA H, LI Dan, WU Suli, et al. H2O-and ethanol concentration-responsive polymer/gel inverse opal photonic crystal[J]. Journal of Colloid and Interface Science, 2022, 605: 803-812.
[15] KIM J B, CHAE C, HAN S H, et al. Direct writing of customized structural-color graphics with colloidal photonic inks[J]. Science Advances, 2021. DOI:10.1126/sciadv.abj8780.
[16] HU Y, QI C, MA D, et al. Multicolor recordable and erasable photonic crystals based on on-off thermoswitchable mechanochromism toward inkless rewritable paper[J]. Nature Communications, 2024. DOI:10.1038/s41467-024-49860-3.
[17] YU S, CAO X, NIU W, et al. Large-area and water rewriteable photonic crystal films obtained by the thermal assisted air-liquid interface self assembly[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22777-22785.
[18] WANG X, LI Y, ZHENG J, et al. Polystyrene@poly(methyl methacrylate-butyl acrylate) core-shell nanoparticles for fabricating multifunctional photonic crystal films as mechanochromic and solvatochromic sensors[J]. ACS Applied Nano Materials, 2022, 5(1): 729-736.
[19] 巩鑫波. 响应性结构色织物的构筑与变色性能调控[D]. 上海, 东华大学, 2023:1-20.
GONG Xinbo. Construction of responsive structured color fabrics and modulation of color change perfor-mance[D]. Shanghai: Donghua University, 2023:1-20.
[20] PI J K, YANG J, ZHONG Q, et al. Dual-layer nanofilms via mussel-inspiration and silication for non-iridescent structural color spectrum in flexible dis-plays[J]. ACS Applied Nano Materials, 2019, 2(7): 4556-4566.
[21] LIU Y, SUN Y, QI Y, et al. Water-rewritable structural color textiles with fast response speed and antispreading capability[J]. ACS Applied Materials & Interfaces, 2024, 16(41): 55945-55954.
[1] 魏志强, 刘新华. 耐热仿生结构色织物的制备及其性能[J]. 纺织学报, 2025, 46(05): 195-201.
[2] 赵祥璐, 方寅春, 李伟. 超疏水自清洁结构色织物的制备及其性能[J]. 纺织学报, 2025, 46(04): 154-161.
[3] 史芷丞, 张玉, 于鸿, 马桂玲, 陈凤翔, 徐卫林. 仿生结构生色技术及其在纺织领域应用的研究进展[J]. 纺织学报, 2024, 45(08): 241-249.
[4] 向娇娇, 柳浩, 欧阳申珅, 马万彬, 柴丽琴, 周岚, 邵建中, 刘国金. 高疏水性双面结构生色棉织物的一步法制备[J]. 纺织学报, 2024, 45(04): 111-119.
[5] 王晓辉, 李新阳, 李义臣, 胡敏干, 刘国金, 周岚, 邵建中. 仿生光子晶体结构生色织物的大面积连续化制备[J]. 纺织学报, 2023, 44(05): 21-28.
[6] 顾佳, 张振雄, 韩颖, 胡建臣, 张克勤. 基于光子晶体结构生色纤维的研究进展[J]. 纺织学报, 2023, 44(04): 212-221.
[7] 柳浩, 马万彬, 栾一鸣, 周岚, 邵建中, 刘国金. 光子晶体结构生色碳纤维/涤纶混纺纱线的制备及其性能[J]. 纺织学报, 2023, 44(02): 159-167.
[8] 李月佳, 高伟洪, 杨树, 林田田, 朱婕, 赵小燕, 张之悦. 全光谱SiO2结构色薄膜的加色法制备及其光学性能[J]. 纺织学报, 2023, 44(02): 168-175.
[9] 高益平, 李义臣, 王晓辉, 刘国金, 周岚, 邵敏, 邵建中. 基于液态光子晶体固定化的柔性结构生色膜制备及其性能[J]. 纺织学报, 2022, 43(12): 1-7.
[10] 程宁波, 缪东洋, 王先锋, 王朝晖, 丁彬, 俞建勇. 用于个人热湿舒适管理的功能纺织品研究进展[J]. 纺织学报, 2022, 43(10): 200-208.
[11] 张典典, 于梦楠, 李敏, 刘明明, 付少海. 基于聚合物微球接枝硅油的超滑棉织物制备及其防污性能[J]. 纺织学报, 2022, 43(10): 119-125.
[12] 张星月, 韩朋帅, 王一萌, 张耘箫, 周岚, 刘国金. 非对称润湿特性纺织基材上高稳固光子晶体的构筑[J]. 纺织学报, 2022, 43(08): 88-94.
[13] 朱小威, 韦天琛, 李亦江, 邢铁玲, 陈国强. 聚苯乙烯/铁-单宁酸配合物微球在棉织物上的结构生色[J]. 纺织学报, 2022, 43(05): 32-37.
[14] 王东伟, 房宽峻, 刘秀明, 张鑫卿, 安芳芳. 胺化活性红195/聚合物微球的制备及其在棉织物染色中的应用[J]. 纺织学报, 2022, 43(04): 90-96.
[15] 林田田, 杨丹, 高伟洪, 张之悦, 赵小燕. 具有低角度依赖性的全可见光谱结构色薄膜的制备[J]. 纺织学报, 2022, 43(02): 149-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!