纺织学报 ›› 2022, Vol. 43 ›› Issue (05): 32-37.doi: 10.13475/j.fzxb.20211206406

• 特约专栏:第十一届中国纺织学术年会专家观点 • 上一篇    下一篇

聚苯乙烯/铁-单宁酸配合物微球在棉织物上的结构生色

朱小威, 韦天琛, 李亦江, 邢铁玲(), 陈国强   

  1. 苏州大学 纺织与服装工程学院, 江苏 苏州 215021
  • 收稿日期:2021-12-28 修回日期:2022-02-27 出版日期:2022-05-15 发布日期:2022-05-30
  • 通讯作者: 邢铁玲
  • 作者简介:朱小威(1996—),女,博士生。主要研究方向为纺织品结构生色。
  • 基金资助:
    国家自然科学基金项目(51973144);国家自然科学基金项目(51741301);江苏高校优势学科建设工程资助项目(苏政办发[2018]87号);国家级大学生创新创业训练计划项目(202010285045)

Structural coloration of polystyrene/iron-tannin acid complex nanospheres on cotton fabrics

ZHU Xiaowei, WEI Tianchen, LI Yijiang, XING Tieling(), CHEN Guoqiang   

  1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
  • Received:2021-12-28 Revised:2022-02-27 Published:2022-05-15 Online:2022-05-30
  • Contact: XING Tieling

摘要:

针对目前基于多巴胺制备结构色织物的过程耗时及成本高的问题,采取单宁酸替代多巴胺快速实现结构色效果,制备了聚苯乙烯/铁-单宁酸配合物(PS/TA-Fe3+)微球,并通过重力沉积法在棉织物表面构建无规密堆积的非晶胶体阵列。采用马尔文纳米粒度分析仪、场发射电子显微镜、透射电子显微镜和显微角分辨光谱仪对聚苯乙烯(PS)微球、PS/TA-Fe3+微球和结构色织物进行了表征,探究了适宜的单宁酸和Fe3+用量,表征了结构色织物表面PS/TA-Fe3+微球的排列、结构生色效果及PS/TA-Fe3+涂层的结构稳定性。结果表明:当单宁酸用量为10%、单宁酸与Fe3+的量比为10:1时,制备的PS/TA-Fe3+微球粒径均匀、单分散性较好,结构色织物颜色柔和明亮,不具备角度依赖性,且具有良好的耐洗涤和耐摩擦性能。

关键词: 结构生色, 结构色织物, 聚苯乙烯/铁-单宁酸配合物微球, 非晶胶体阵列, 无规密堆积结构

Abstract:

It is known that dopamine structurally colored fabrics is expensive and time-consuming. To address this problem, tannic acid was used in this research to replace dopamine for quickly achieving the structural color effect. PS/iron-tannin acid complex (PS/TA-Fe3+) nanospheres was prepared, which was used to construct random close-packed amorphous photonic arrays on the surface of cotton fabrics by gravity deposition. Polystyrene (PS) microspheres, PS/TA-Fe3+ nanospheres and structurally colored fabrics was characterized by Malvern nanoparticle size analyzer, field emission electron microscope, transmission electron microscope and angle-resolved spectrometer. The appropriate addition of tannins acid and Fe3+ were explored, and the arrangement of PS/TA-Fe3+ nanospheres on the surface of structurally colored fabrics, the structural colors and structural stability of PS/TA-Fe3+ coatings were characterized. The results show that when the amount of tannic acid is 10% and the molar ratio of tannic acid and Fe3+ is 10:1, the prepared PS/TA-Fe3+ microspheres appear to have uniform particle size and good mono-dispersity. The prepared fabric displayed soft, bright and angle-independent structural color, demonstrating good washing and rubbing durability.

Key words: structural color, structurally colored fabric, polystyrene/iron-tannin acid complex nanospheres, amorphous colloidal arrays, random close-packed structure

中图分类号: 

  • TS193

表1

不同单宁酸质量分数制备的PS/TA-Fe3+微球的粒径和PDI值"

单宁酸质量分数/% Dh/nm Da/nm PDI值
0 214 190 0.029
5 231 208 0.041
10 245 221 0.059
15 257 231 0.068
20 254 233 0.073
25 256 228 0.096
30 247 227 0.144

图1

不同单宁酸质量分数的PS/TA-Fe3+微球结构色织物的光学照片"

图2

不同单宁酸质量分数的PS/TA-Fe3+微球结构色织物的反射率曲线"

表2

不同Fe3+用量制备的PS/TA-Fe3+微球的粒径和PDI值"

单宁酸与Fe3+量比 Dh/nm Da/nm PDI值
0 214 190 0.029
20:1 239 216 0.065
10:1 245 221 0.059
20:3 247 223 0.082
5:1 251 225 0.068
4:1 249 222 0.074
10:3 247 225 0.079

图3

不同Fe3+用量的PS/TA-Fe3+微球结构色织物的光学照片"

图4

不同Fe3+用量的PS/TA-Fe3+微球结构色织物的反射率曲线"

图5

不同核粒径的PS/TA-Fe3+微球结构色织物照片"

图6

不同核粒径的PS/TA-Fe3+微球结构色织物的SEM照片"

图7

核粒径250 nm制备的PS/TA-Fe3+微球的TEM照片"

图8

观察角0°~90°变化时织物结构色的变化"

图9

不同核粒径的PS/TA-Fe3+微球结构色织物的反射率光谱"

图10

观察角0°~50°变化时织物结构色的反射率光谱"

图11

不同洗涤周期后结构色织物的反射光谱和洗液的透过率图谱"

图12

结构色织物摩擦前和摩擦后的光学图像与SEM 照片"

[1] 张骜, 袁伟, 周宁, 等. 结构生色及其染整应用前景:一[J]. 印染, 2012(13): 44-47.
ZHANG Ao. YUAN Wei, ZHOU Ning, et al. Structural color and its application prospect in dyeing and finishing industry:I[J]. China Dyeing & Finishing, 2012(13): 44-47.
[2] 曾琦, 李青松, 袁伟, 等. 非晶无序光子晶体结构色机理及其应用[J]. 材料导报, 2017, 31(1):43-55.
ZENG Qi, LI Qingsong, YUAN Wei, et al. The mechanism and its application of amorphous photonic crystals with structural color[J]. Materials Reports, 2017, 31(1):43-55.
[3] BAI L, LIM Y, ZHOU J J, et al. Bioinspired production of noniridescent structural colors by adhesive melanin-like particles[J]. Langmuir, 2019, 35(30): 9878-9884.
doi: 10.1021/acs.langmuir.9b00917
[4] LI Q S, ZHANG Y F, SHI L, et al. Additive mixing and conformal coating of noniridescent structural colors with robust mechanical properties fabricated by atomization deposition[J]. ACS Nano, 2018, 12(4): 3095-3102.
doi: 10.1021/acsnano.7b08259
[5] ZHANG Y X, HAN P, ZHOU H Y, et al. Highly brilliant noniridescent structural colors enabled by graphene nanosheets containing graphene quantum dots[J]. Advanced Functional Materials, 2018, 28(29): 1802585.
doi: 10.1002/adfm.201802585
[6] YANG X M, GE D T, WU G X, et al. Production of structural colors with high contrast and wide viewing angles from assemblies of polypyrrole black coated polystyrene nanoparticles[J]. ACS Applied Materials & Interfaces, 2016, 8, 16289-16295.
[7] LEE G H, HAN S H, KIM J B, et al. Colloidal photonic inks for mechanochromic films and patterns with structural colors of high saturation[J]. Chemistry of Materials, 2019, 31(19): 8154-8162.
doi: 10.1021/acs.chemmater.9b02938
[8] TAKESHI I, SHOTARO H, TAKU O, et al. Effect of the polydopamine composite method on structural coloration: comparison of binary and unary assembly of colloidal particles[J]. Langmuir, 2020, 36(40): 11880-11887.
doi: 10.1021/acs.langmuir.0c01904
[9] KAWAMURA A, KOHRI M, MORIMOTO G, et al. Full-color biomimetic photonic materials with iridescent and non-iridescent structural colors[J]. Scientific Reports, 2016.DOI: 10.1038/srep38984.
doi: 10.1038/srep38984
[10] 周青青. 酚类化合物/金属离子对纺织品的超疏水改性及应用研究[D]. 苏州: 苏州大学, 2020:2-16.
ZHOU Qingqing. Study on superhydrophobic modification of textiles by phenolic compounds and metal ions and its application[D]. Suzhou: Soochow University, 2020:2-16.
[11] SILEIKA T S, BARRETT D G, ZHANG R, et al. Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 125(41): 10966-10970.
[12] RAHIM M A, EJIMA H, CHO K L, et al. Coordination-driven multistep assembly of metal-polyphenol films and capsules[J]. Chemistry of Materials, 2014, 26(4): 1645-1653.
doi: 10.1021/cm403903m
[13] PERRON N R, BRUMAGHIM J L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding[J]. Cell Biochemistry and Biophysics, 2009, 53: 75-100.
doi: 10.1007/s12013-009-9043-x
[14] KOHRI M, YANAGIMOTO K, KAWAMURA A, et al. Polydopamine-based 3D colloidal photonic materials: structural color balls and fibers from melanin-like particles with polydopamine shell layers[J]. ACS Applied Materials & Interfaces, 2017, 10(9): 7640-7648.
[15] CHEN S L. Preparation of monosize silica spheres and their crystalline stack[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 142(1): 59-63.
doi: 10.1016/S0927-7757(98)00276-3
[16] 朱小威, 韦天琛, 邢铁玲, 等. 非晶光子晶体结构色织物的制备及其数值模拟[J]. 纺织学报, 2021, 42(9): 90-96.
ZHU Xiaowei, WEI Tianchen, XING Tieling, et al. Preparation and numerical simulation of colored fabric with amorphous photonic crystal structures[J]. Journal of Textile Research, 2021, 42(9): 90-96.
[17] 李义臣. 柔性纺织基材表面结构生色光子晶体的稳定性及快速大面积组装研究[D]. 杭州: 浙江理工大学, 2021:9-13.
LI Yichen. Study on the stability and rapid large-scale assembly of photonic crystals with structural color on flexible textile substrates[D]. Hangzhou: Zhejiang Sci-Tech University, 2021:9-13.
[1] 王晓辉, 刘国金, 邵建中. 纺织品仿生结构生色[J]. 纺织学报, 2021, 42(12): 1-14.
[2] 朱小威, 韦天琛, 邢铁玲, 陈国强. 非晶光子晶体结构色织物的制备及其数值模拟[J]. 纺织学报, 2021, 42(09): 90-96.
[3] 刘明雪, 赵倩, 王晓辉, 刘琼溪, 邵建中. 磁控溅射纳米膜与不同纺织基材的结合牢度[J]. 纺织学报, 2021, 42(02): 135-141.
[4] 王晓辉, 李义臣, 刘国金, 唐族平, 周岚, 邵建中. 柔性光子晶体结构生色膜的制备及其光学性质[J]. 纺织学报, 2021, 42(02): 12-20.
[5] 陈佳颖, 辛斌杰, 辛三法, 杜卫平, 许颖琦, 高伟洪. 基于光子晶体的结构色织物研究进展[J]. 纺织学报, 2020, 41(04): 181-187.
[6] 王岩 秦修远 沈蓓 施昌勇 龚龑. 亮布的结构分析及色彩成因[J]. 纺织学报, 2017, 38(07): 85-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!