纺织学报 ›› 2025, Vol. 46 ›› Issue (08): 183-190.doi: 10.13475/j.fzxb.20250202401

• 服装工程 • 上一篇    下一篇

面向个性化曲面枕设计的人体头颈背部曲面形态分类及识别

刘金灵1, 何雅婷1, 顾冰菲1,2,3()   

  1. 1.浙江理工大学 服装学院, 浙江 杭州 310018
    2.浙江省哲学社会科学重点培育研究基地 浙江理工大学数智风格与创意设计研究中心,浙江 杭州 310018
    3.丝绸文化传承与产品设计数字化技术文化和旅游部重点实验室, 浙江 杭州 310018
  • 收稿日期:2025-02-17 修回日期:2025-04-18 出版日期:2025-08-15 发布日期:2025-08-15
  • 通讯作者: 顾冰菲(1987—),女,教授,博士。主要研究方向为数字化服装技术。E-mail:gubf@zstu.edu.cn
  • 作者简介:刘金灵(2003—),女,本科生。主要研究方向为数字化服装技术。
  • 基金资助:
    国家自然科学基金项目(61702461);“纺织之光”中国纺织工业联合会应用基础研究项目(J202007);浙江省哲学社会科学规划艺术学课题(24NDJC171YB);国家大学生创新训练项目(2025093);浙江理工大学科研业务费专项资金资助项目(24076114Y)

Classification and recognition of human head-neck-back curvature morphology for personalized curved-pillow design

LIU Jinling1, HE Yating1, GU Bingfei1,2,3()   

  1. 1. School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Sci-Tech University Digital Intelligence Style and Creative Design Research Center, Key Research Center of Philosophy and Social Sciences, Hangzhou, Zhejiang 310018, China
    3. Key Laboratory of Silk Culture Heritage and Products Design Digital Technology, Ministry of Culture and Tourism, Hangzhou, Zhejiang 310018, China
  • Received:2025-02-17 Revised:2025-04-18 Published:2025-08-15 Online:2025-08-15

摘要: 随着人们对睡眠质量的关注度不断提升,枕头形态设计的科学性越来越重要。为探究青年人体头颈背部曲面形态区别,提出一种基于三维点云数据的“点-线-面-曲率”头颈背部曲面形态分类方法。以252名18~25岁在校大学生为对象,采用三维人体扫描仪获取人体三维点云数据以提取其头颈背部三维正中矢状面。基于矢状面轮廓特征点建立三维坐标系,确定出枕后点、颈后点、腋矢交点等 9 个关键特征点,从水平和冠状2个视角共截取11条曲面并形成24个曲面交点,提取其三维坐标值及正中矢状面纵向曲率作为形态分类特征参数。经主成分分析和聚类分析,将人体头颈背部曲面形态最终分为 4类,采用判别分析建立出分类规则并进行精确度验证。结果表明:圆润型枕骨部位较圆顺;颈深型的颈窝较深;缓平型枕骨部位较扁平;前倾型的头颈背部有前倾趋势。基于形态判别规则对初始样本数据整体回判的准确率高达95.58%。该研究方法为曲面枕的个性化定制提供了数据支撑以及分类参考。

关键词: 头颈背部形态, 人体工学, 三维人体扫描, 形态识别, 曲面枕, 个性化定制

Abstract:

Objective People are paying increasing attention to sleep quality, for which the scientific design of pillow shapes becomes more important. The shape of a pillow closely relates to the head, neck, and back of the human body. However, people of different ages have different body shapes, so existing pillows on the market hardly meet everyone's needs. This study focused on young adults and investigated the curved shape differences in their heads, necks, and backs.

Method The study adopted a point-line-surface-curvature classification approach. First, [TC]2 NX-16 non-contact 3-D scanner was used to capture human body point cloud data. Point cloud registration and iterative closest point (ICP) algorithm then extracted the head-neck-back median sagittal plane. Key points were marked according to surface morphological characteristics. After extracting horizontal and coronal planes based on feature point locations, a 3-D coordinate system was established to measure intersection coordinates. The study then performed data classification by integrating coordinate measurements with curvature parameters.

Results Three-dimensional scanning captured head-neck-back morphological data from 252 university male and female students aged 18-25. The posterior median sagittal plane revealed nine feature points, which are posterior occipital point, posterior neck point, axillary-sagittal intersection point, superior occipital peak point, intersection point of the cervical-occipital contour, inferior occipital peak point, and three cervicodorsal points. The spatial distribution of feature points guided the extraction of 11 curved surfaces (8 transverse, 3 longitudinal) across the head-neck-back regions. These surfaces formed 24 external contour intersection points in three-dimensional space.

A 3-D coordinate system was established with its origin at the center of the posterior neck point's horizontal cross-section, integrating spatial coordinates of all intersection points and median sagittal plane curvature parameters. Principal component analysis (PCA) revealed that the first four principal components achieved a cumulative variance contribution rate of 0.8, effectively reducing data dimensionality while preserving most information. The PCA algorithm identified four characteristic factors. K-means clustering analysis sequentially calculated sum of squared errors values between each sample and its cluster center for different K values. Optimal clustering occurred at K=4, leading to the final classification of head-neck-back surface morphology into four characteristic types, which are rounded, deep-necked, flattened, and forward-leaning.

The results showed that the occipital bone line of the round type was smooth and natural with a uniform transition. The neck depression of the deep-necked type was relatively deep, forming an obvious drop compared with the surrounding areas. The curvature change of the occipital bone of the flattened type was small and almost flat. The entire head-neck-back of the forward-leaning type demonstrated a forward leaning trend, deviating from the normal physiological curve. According to the morphological discrimination rules, they re-determined the initial sample data as a whole, and the accuracy rate reached as high as 95.58%, showing a remarkable effect.

Conclusion The study utilized the median sagittal plane as the anatomical reference for head-neck-back morphological analysis, establishing a three-dimensional Cartesian coordinate system. Principal component analysis combined with K-means clustering of spatial coordinates and curvature parameters classified the samples into four distinct morphological types: rounded, deep-necked, flattened, and forward-leaning, demonstrating a classification accuracy of 95.58%. The curved pillow design incorporated personalized parameters for different morphological types. The rounded type was characterized by its smooth and curvilinear contour, and an increased groove depth is essential. This enhancement allows the pillow to cradle the head's curvature snugly during sleep, reducing pressure points and promoting a more relaxed rest. The deep-necked type with pronounced cervical concavity benefits significantly from an elevated pillow apex height. This adjustment ensures that the pillow aligns perfectly with the natural curve of the neck, providing crucial support and preventing strain. The flattened type presents a relatively even surface, an expanded contact surface area is imperative. This design feature distributes pressure evenly across the occipital region, minimizing discomfort and enhancing sleep quality. For the forward-leaning type, a raised front section with a gradual slope is incorporated into the pillow design. This unique structure gently corrects spinal alignment during rest, helping to restore the natural posture and alleviate potential back pain.

Key words: head-neck-back curve, ergonomics, three-dimensional human body scanning, morphological recognition, curved-pillow, personalized customization

中图分类号: 

  • TS109

图1

头颈背部区域划分"

图2

横截面截取示意图"

表1

特征点定义"

特征点 符号 定义
枕后点 A 在正中矢状面上,枕部离眉间点最远的点
后颈点 B 头枕部在正中矢状面上的最凹点
腋矢交点 C 腋下截面与正中矢状面在背部的交点
枕上峰点 D 枕后点与后颈点的连线向左偏移与外轮廓线的切点
颈枕轮廓交点 E 枕后点与后颈点的连线与外轮廓线的交点
枕下峰点 F 枕后点与后颈点的连线向右偏移与外轮廓线的切点
第1颈背点 G 后颈点与腋矢交点在垂直方向上靠近后颈点的四等分点
第2颈背点 H 后颈点与腋矢交点在垂直方向上的二等分点
第3颈背点 I 后颈点与腋矢交点在垂直方向上靠近腋矢交点的四等分点

图3

纵切面截取示意图"

图4

坐标点示意图"

图5

主成分解释方差"

图6

基于手肘法的聚类结果"

表2

判别结果"

分类 真实样本 判别结果 准确率/%
类别1 89 88 98.88
类别2 50 49 98.00
类别3 65 60 92.31
类别4 45 41 91.11
总计 249 238 95.58

图7

头颈背部曲线形态分类结果"

图8

仰卧状态下枕骨形态示意图"

[1] 侯梦婕. 基于三维人体扫描枕型的结构研究[D]. 西安: 西安工程大学, 2019:1-81.
HOU Mengjie. Research on the structure of pillow based on 3D human body scanning[D]. Xi'an: Xi'an Polytechnic University, 2019: 1-81.
[2] 田山, 姚成鸿, 曹学鹏, 等. 个性化最佳枕型的生物力学与工效学研究[J]. 医用生物力学, 2024, 39(S1):162.
TIAN Shan, YAO Chenghong, CAO Xuepeng, et al. Biomechanical and ergonomic research on personalized optimal pillow shape[J]. Journal of Medical Biomechanics, 2024, 39(S1): 162.
[3] KURAMOTO Akisue, INUI Yuma, ICHIKAWA Tomu, et al. Comfortable pillow design based on individual basis[J]. Information (Japan), 2017, 20(9):6627-6644.
[4] SON Juhyun, JUNG Sungwook, SONG Haseung, et al. A survey of koreans on sleep habits and sleeping symptoms relating to pillow comfort and support[J]. International Journal of Environmental Research and Public Health, 2020, 17(1):302-302.
[5] 郭仲华. 枕头没选好,颈椎病来找[J]. 中医健康养生, 2022, 8(9):60-62.
GUO Zhonghua. If the pillow is poorly chosen, cervical spondylosis will follow[J]. Traditional Chinese Medi- cine Health Preservation, 2022, 8(9): 60-62.
[6] 杜一明. 基于头颈部生理结构分析的睡枕压缩舒适性研究[D]. 上海: 东华大学, 2019:1-85.
DU Yiming. Research on the compression comfort of sleeping pillows based on the analysis of head and neck physiological structures[D]. Shanghai: Donghua University, 2019:1-85.
[7] 葛苏敏, 林瑞冰, 徐平华, 等. 基于机器视觉的曲面枕个性化定制方法[J]. 纺织学报, 2024, 45(2):214-220.
GE Sumin, LIN Ruibing, XU Pinghua, et al. Personalized customization method of curved pillows based on machine vision[J]. Journal of Textile Research, 2024, 45(2): 214-220.
[8] TIAN Shan, YAO Chenghong, WANG yawei, et al. The individualized optimal pillow height and neck support design for side sleepers[J]. Medical & Biological Engineering & Computing, 2025, 63(2):535-544.
[9] LIU Kristie, GREENCORN David J, APONTE Daniel I, et al. Comparison of surrogate 50th percentile human headforms to an adult male sample using three-dimensional modeling and principal component analy-sis[J]. Proceedings of the Institution of Mechanical Engineers, Part P. Journal of Sports Engineering and Technology, 2019, 233(3):432-442.
[10] 王珊珊, 王鸿博. 基于三维人体测量的江浙在职男青年颈部形态[J]. 纺织学报, 2013, 34(10):133-135.
WANG Shanshan, WANG Hongbo. Neck morphology of working young men in Jiangsu and Zhejiang Provinces based on 3D anthropometry[J]. Journal of Textile Research, 2013, 34(10): 133-135.
[11] 张健, 徐凯忆, 赵崧灵, 等. 基于二维照片的青年男性颈肩部形态分类与识别[J]. 纺织学报, 2022, 43(5):145-148.
ZHANG Jian, XU Kaiyi, ZHAO Songling, et al. Classification and recognition of neck and shoulder morphologies of young males based on two-dimensional photographs[J]. Journal of Textile Research, 2022, 43(5): 145-148.
[12] SONG Hwa Kyung, BAYTAR Fatma, ASHDOWN Susan, et al. 3D anthropometric analysis of women's aging bodies:upper body shape and posture changes[J]. Fashion Practice-the Journal of Design Creative Process & the Fashion Industry, 2022, 14(1):26-48.
[13] WANG Ting, GU Bingfei. Automatic recognition and 3D modeling of the neck-shoulder human shape based on 2D images[J]. International Journal of Clothing Science and Technology, 2021, 33(5):780-794.
[14] YAN Song, WIRTA Johan, KAMARAINEN Joni-Kristian, et al. Anthropometric clothing measurements from 3D body scans[J]. Machine Vision and Applications, 2020, 31(1/2):7-7.
[15] 王婷. 青年女性颈肩部形态自动识别与建模研究[D]. 杭州: 浙江理工大学, 2021:1-44.
WANG Ting. Research on automatic recognition and modeling of neck and shoulder morphologies of young females[D]. Hangzhou: Zhejiang Sci-Tech University, 2021: 1-44.
[16] 蔡佳含, 曹欢. 点云数据虚拟场景图像智能展示仿真研究[J]. 计算机仿真, 2024, 41(10):448-452.
CAI Jiahan, CAO Huan. Research on intelligent display simulation of point cloud data virtual scene images[J]. Computer Simulation, 2024, 41(10): 448-452.
[17] LI Leihui, WANG Riwei, ZHANG Xuping, et al. A tutorial review on point cloud registrations: principle, classification, comparison, and technology chall-enges[J]. Mathematical Problems in Engineering: Theory, Methods and Applications, 2021, 2021(34):1-32.
[18] HU P, MUNTEANU A, VRIJE Unv Brussel, et al. VRIJE Unv Brusselet al.Method for registration of 3D shapes without overlap for known 3D priors[J]. Electronics Letters, 2021, 57(9):357-359.
[19] SUKILOVIC Tijana. UNIV Beigrade, Curvature based shape detection[J]. Computational Geometry-theory and Applications, 2015, 48(3): 180-188.
[20] REN Sicong, WONG Duo Wai Chi, YANG Hui, et al. Effect of pillow height on the biomechanics of the head-neck complex: investigation of the cranio-cervical pressure and cervical spine alignment[J]. PeerJ Inc, 2016. DOI:10.7717/PEERJ.2397.
[21] CAI Dengchuan, CHEN Hsiap-Lin, NATI Yunlin. Ergonomic approach for pillow concept design[J]. Applied Ergonomics, 2016,52:142-150.
[22] XU Y, YANG JY, JIN Z. A novel method for Fisher discriminant analysis[J]. Pattern Recognition, 2004, 37(2):381-384.
[1] 丛洪莲, 方蕾妹, 姜菲, 李慧建, 俞旭良. 基于功能分区的横编防护外套模块化设计[J]. 纺织学报, 2025, 46(05): 227-235.
[2] 肖伯祥, 张悦, 胡志远, 赵欲晓, 刘莉. 速度滑冰比赛服个性化样板生成方法[J]. 纺织学报, 2024, 45(09): 146-153.
[3] 葛苏敏, 林瑞冰, 徐平华, 吴思熠, 罗芊芊. 基于机器视觉的曲面枕个性化定制方法[J]. 纺织学报, 2024, 45(02): 214-220.
[4] 刘玉叶, 王萍. 基于纹理特征学习的高精度虚拟试穿智能算法[J]. 纺织学报, 2023, 44(05): 177-183.
[5] 肖伯祥, 刘正东, 郭昱成, 王渊霞. 基于三维人体扫描模型的衬衣版型生成方法[J]. 纺织学报, 2022, 43(12): 151-159.
[6] 刘雪艳, 蒋高明. 基于ABAQUS的运动压力袜编织尺寸预测[J]. 纺织学报, 2022, 43(06): 79-85.
[7] 张健, 徐凯忆, 赵崧灵, 顾冰菲. 基于二维照片的青年男性颈肩部形态分类与识别[J]. 纺织学报, 2022, 43(05): 143-149.
[8] 朱伟明 卫杨红. 不同情景下服装个性化定制体验价值差异研究[J]. 纺织学报, 2018, 39(10): 115-119.
[9] 赖军 张梦莹 张华 李俊. 消防服衣下空气层的作用与测定方法研究进展[J]. 纺织学报, 2017, 38(06): 151-156.
[10] 李祖华. 服装设计用三维人体扫描系统[J]. 纺织学报, 2014, 35(1): 144-.
[11] 张爱萍, 王云仪, 姚怡. 服装胸围截面上距离松量的分配关系[J]. 纺织学报, 2012, 33(6): 76-80.
[12] 王云仪 张雪 李小辉 李俊. 基于Geomagic软件的燃烧假人衣下空气层特征提取[J]. 纺织学报, 2012, 33(11): 102-106.
[13] 李晓志;李晓久;王玉秀. 基于人体扫描线点云的光顺去噪[J]. 纺织学报, 2010, 31(3): 133-138.
[14] 杨允出;陈敏之;邹奉元. 基于三维扫描数据的女性体型特征参数分析[J]. 纺织学报, 2009, 30(08): 117-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!