纺织学报 ›› 2025, Vol. 46 ›› Issue (08): 80-88.doi: 10.13475/j.fzxb.20241107101

• 纺织工程 • 上一篇    下一篇

聚氯乙烯纤维机织物的制备及其复合膜结构和性能

李晗1, 钱建华1(), 翁可欣1, 王澳1, 戴宏祥2, 单江音1   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.杭州市质量计量科学研究院, 浙江 杭州 310018
  • 收稿日期:2024-11-27 修回日期:2025-06-11 出版日期:2025-08-15 发布日期:2025-08-15
  • 通讯作者: 钱建华(1973—),男,教授,硕士。主要研究方向为功能性纤维材料和膜过滤材料。E-mail:qianjianhua@zstu.edu.cn
  • 作者简介:李晗(1999—),男,硕士生。主要研究方向为膜过滤材料。
  • 基金资助:
    浙江理工大学科技创新活动计划项目(2024R406A008)

Preparation of woven fabrics from polyvinyl chloride fiber and their composite film structures and properties

LI Han1, QIAN Jianhua1(), WENG Kexin1, WANG Ao1, DAI Hongxiang2, SHAN Jiangyin1   

  1. 1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Hangzhou Institute of Quality and Measurement Science, Hangzhou, Zhejiang 310018, China
  • Received:2024-11-27 Revised:2025-06-11 Published:2025-08-15 Online:2025-08-15

摘要: 为提高聚氯乙烯(PVC)平板膜的力学性能和耐腐蚀性能,采用熔融纺丝工艺,纺制PVC长丝,并通过机织工艺制成PVC纤维机织物;以聚氯乙烯(PVC)为原材料,氯化聚氯乙烯(CPVC)为共混膜材料,N,N-二甲基乙酰胺(DMAc)为溶剂,聚乙二醇(PEG)2000为成孔剂制备PVC/CPVC平板膜;分别采用PVC机织物(PVC-W)、涤纶(PET)机织物、聚丙烯(PP)熔喷非织造布、PET纺黏非织造布为支撑层,涂覆上述铸膜液构建具有非对称性的复合膜。借助扫描电子显微镜、原子力显微镜表征复合膜形貌,同时测试样品的亲水性能、力学性能、耐酸碱腐蚀性能等。结果表明:以PVC-W为支撑层的复合膜(PVC-W-P)具有致密的微孔过滤层,表层与支撑层之间连接紧密,形成了机械互锁结构,增强了界面结合力,水接触角降低至50°,纯水通量增大1.5倍,蛋白截留率提高4.6%。PVC-W-P的断裂强力是原膜(PVC/CPVC-P)的17.6倍,经2.55 mol/L的H2SO4和6.25 mol/L的NaOH溶液腐蚀72 h,其断裂强力分别是PVC/CPVC-P的15.1倍和15.6倍。通过综合分析PVC-W对PVC-W-P性能的影响,为制备高性能的复合膜支撑体提供了理论参考。

关键词: 亲水性能, 耐腐蚀性能, 支撑层, 复合膜, 聚氯乙烯, 氯化聚氯乙烯, 过滤材料

Abstract:

Objective In order to improve the mechanical properties and acid and alkali corrosion resistance of the separation membrane, polyvinyl chloride(PVC)/chlorinated polyvinyl chloride(CPVC) composite membrane with PVC mechanism mesh as the support layer was prepared. Membrane separation technology is widely used in petrochemical, biomedical, environmental protection, seawater desalination and other fields. Improving the mechanical properties and acid and alkali corrosion resistance of separation membranes would broaden the application range of separation membranes, improve the service life and save cost.

Method The polyvinyl chloride/chlorinated polyvinyl chloride flat sheet membrane was prepared by submerged phase separation method using PVC as raw material, CPVC as blended membrane material, N,N-dimethylacetamide (DMAc) as solvent, and polyethylene glycol (PEG) 2000 as pore-former. The melt spinning process parameters were optimized for the preparation of polyvinyl chloride fibers filament, which was then made into PVC woven fabric. A composite membrane with asymmetric characteristics was constructed using polyvinyl chloride/CPVC flat sheet membrane as hydrophilic layer, and polyvinyl chloride braid as support layer.

Results The test results show that PVC-W-P (laminating film with PVC woven fabric as support body) has a dense microporous filtration layer, and the surface layer is closely connected to the support layer, forming a mechanical interlocking structure that enhances the interfacial bonding force, and the PVC support layer is successfully bonded to the bottom of the composite membrane. The surface roughness of the composite membrane increased, and the surface hydrophilicity improved. The water contact angle was reduced to 50°, the pure water flux was increased by 1.5 times, and the protein retention rate was increased by 4.6%. Under the condition of 6.25 mol/L NaOH and 2.55 mol/L H2SO4 solution treatment for 96 h, the mass loss rate of PVC fiber filament was more than 1% point, and the loss of breaking strength was 17% for 72 h. The PVC fibers were only partially hydrolyzed or degraded, and still retained most of the structural integrity. The breaking strength of PVC-W-P (laminating film with PVC woven fabric as support body) combined with PVC mechanism mesh was 17.6 times of that of PVC/CPVC-P (membranes without binding support bodies), and it was corroded by 2.55 mol/L H2SO4 and 6.25 mol/L NaOH solution for 72 h. Its breaking strength was 15.1 times and 15.6 times of that of PVC/CPVC-P (membranes without binding support bodies), respectively, and the PVC/CPVC-P after acid and alkali treatment had a retention rate decreased less. Comprehensively analyzing the influence of PVC/CPVC-P on the performance of PVC-W-P, the corrosion resistance to acid and alkali is greatly improved, and the composite membrane still has a greater strength after treatment with different concentrations of acid and alkali.

Conclusion PVC-W-P based on PVC woven mesh exhibits strong interfacial bonding, which significantly improves the hydrophilicity, mechanical properties and acid and alkali corrosion resistance of the composite membrane. Under acid and alkali conditions, PVC-W-P still maintains excellent mechanical properties and good filtration performance, which extends the service life of the composite membrane. This study provides a theoretical basis and reference for the preparation of composite membrane supports with excellent performance.

Key words: hydrophilicity, corrosion resistance, support layer, composite membrane, polyvinyl chloride, chlorinated polyvinyl chloride, filter material

中图分类号: 

  • TQ051.893

图1

复合膜制备流程图"

图2

不同处理时间酸碱溶液对PVC纤维长丝质量的影响"

图3

不同处理时间酸碱溶液对PVC长丝强力的影响"

图4

不同复合膜的表面与截面电镜照片"

表1

不同膜支撑体复合膜表面粗糙度"

试样编号 Ra/nm Rq/nm
PVC/CPVC-P 4.84 6.12
PVC-W-P 12.10 16.50
PET-W-P 17.20 29.10
PP-M-P 8.47 12.30
PET-S-P 10.90 14.30

图5

不同复合膜AFM三维图像"

表2

不同支撑体复合前后力学性能变化"

试样编号 断裂强力/N 断裂伸长率/%
复合前 复合后 复合前 复合后
PVC/CPVC-P 12.2 28.5
PVC-W 192.3 215.1 32.0 30.9
PET-W 205.0 236.2 30.5 18.5
PP-M 4.8 18.6 14.5 12.1
PET-S 15.4 40.6 18.0 12.5

表3

不同支撑体复合膜酸、碱处理后力学性能变化"

试样编号 酸处理后 碱处理后
断裂强
力/N
断裂伸长
率/%
断裂强
力/%
断裂伸长
率%
PVC/CPVC-P 10.8 11.8 9.6 12.1
PVC-W-P 190.2 26.4 183.7 23.2
PET-W-P 13.4 7.9 12.5 5.0
PP-M-P 13.9 11.5 10.8 12.0
PET-S-P 33.6 18.5 31.8 15.5

图6

不同浓度H2SO4对PVC复合膜力学性能的影响"

图7

不同浓度NaOH对PVC复合膜力学性能的影响"

表4

复合膜的孔隙率及水接触角"

试样编号 孔隙
率/%
水接触
角/(°)
酸处理后
水接触
角/(°)
碱处理后
水接触
角/(°)
PVC-CPVC-P 22.6 66.3 65.5 64.1
PVC-W-P 38.8 50.0 48.2 46.2
PET-W-P 35.6 61.0 57.1 55.1
PP-M-P 28.9 62.5 58.2 57.3
PET-S-P 33.9 57.1 53.8 52.1

表5

复合膜的水通量及截留率"

试样编号 水通量/(L·m-2·h-1) 截留率/%
未处理 酸处理后 碱处理后 未处理 酸处理后 碱处理后
PVC-CPVC-P 86 99 116 74 73.0 71.2
PVC-W-P 145 151 153 78 77.2 76.3
PET-W-P 136 157 162 80 72.1 70.5
PP-M-P 124 135 140 82 79.1 75.7
PET-S-P 141 149 156 75 72.8 71.0
[1] 崔忠超. 城市水污染的现状及治理措施分析[J]. 资源节约与环保, 2022, 252(11): 74-77.
CUI Zhongchao. Analysis of the current situation of urban water pollution and treatment measures[J]. Resources Economization & Environmental Protection, 2022, 252(11):74-77.
[2] LI Jingfeng, XU Zhenjiang, HU Yang. Microporous polyether sulfone membranes prepared under the combined precipitation conditions with non-solvent additives[J]. Polymers for Advanced Technologies, 2008, 19(4):251-257.
[3] 王静, 张雨山. 超滤膜和微滤膜在污(废)水处理中的应用研究现状及发展趋势[J]. 工业水处理, 2001(3): 4-8.
doi: 11894/1005-829x.2001.21(3).4
WANG Jing, ZHANG Yushan. Present state of the application of the ultrafiltration membrane and microfiltration membrane to wastewater treatment and its development trend[J]. Industrial Water Treatment, 2001(3):4-8.
doi: 11894/1005-829x.2001.21(3).4
[4] 张永波. 苦咸水淡化用聚偏氟乙烯微孔蒸馏膜的研制[D]. 天津: 天津工业大学, 2002: 98-108.
ZHANG Yongbo. Development of polyvinylidene fluoride microporous distillation membrane for brackish water desalination[D].Tianjin: Tiangong University, 2002:98-108.
[5] 刘倩男. 分离膜支撑体用湿法非织造材料的制备及性能研究[D]. 天津: 天津工业大学, 2021: 46-56.
LIU Qiannan. Preparation and properties of wet nonwoven materials for separation membrane support body[D]. Tianjin: Tiangong University, 2021:46-56.
[6] 张渠平. 热轧涤纶湿法非织造材料及其对聚砜支撑膜的影响[D]. 天津: 天津工业大学, 2020: 53-63.
ZHANG Quping. Hot-rolled polyester wet nonwoven materials and their effect on polysulfone-supported membranes[D]. Tianjin: Tiangong University, 2020:53-63.
[7] 杨惠娣. 聚氯乙烯及其热稳定剂现状与发展趋势[J]. 中国塑料, 2019, 33(4): 111-119.
YANG Huidi. Current situation and development trends of PVC and its stabilizers[J]. China Plastics, 2019, 33(4):111-119.
[8] 苏星瑞, 白时兵, 杨双桥. 聚氯乙烯热稳定剂的行业现状与发展趋势[J]. 塑料工业, 2023, 51(4): 8-12,65.
SU Xingrui, BAI Shibing, YANG Shuangqiao. Status and development trends of PVC thermal stabilizer[J]. China Plastics Industry, 2023, 51(4):8-12,65.
[9] 汤超, 刘四华, 张仁伟, 等. 改性CNC对聚氯乙烯超滤膜性能的影响[J]. 膜科学与技术, 2020, 40(5): 9-15,22.
TANG Chao, LIU Sihua, ZHANG Renwei, et al. Effect of modified CNC on the performance of polyvinyl chloride ultrafiltration membrane[J]. Membrane Science and Technology, 2020, 40(5):9-15,22.
[10] BEHBOUDI A, JAFARZADEH Y, YEGANI R. Polyvinyl chloride/polycarbonate blend ultrafiltration membranes for water treatment[J]. Journal of Membrane Science, 2017,534:18-24.
[11] 吴仲孝, 孟扬, 苏娟娟, 等. 氮化硼表面改性及其对PVC膜耐碱性能的影响[J]. 浙江理工大学学报(自然科学版), 2021, 45(6): 736-743.
WU Zhongxiao, MENG Yang, SU Juanjuan, et al. Surface modification of boron nitride and its effect on alkali resistance property of polyvinyl chloride membranes[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences), 2021, 45(6):736-743.
[12] 石磊, 张琳炜, 刘亚, 等. 分离膜湿法非织造支撑体的结构设计与应用[J]. 纺织学报, 2022, 43(6): 15-21.
SHI Lei, ZHANG Linwei, LIU Ya, et al. Structural design and application of wet-laid nonwovens for separating membrane support[J]. Journal of Textile Research, 2022, 43(6):15-21.
[13] MCCUTCHEON J R, ELIMELECH M. Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes[J]. Journal of Membrane Science, 2008, 318(1/2):458-466.
[14] 杨园园, 秦青青, 雷婷, 等. 两种支撑材料对PVDF膜微观结构和性能的影响[J]. 塑料, 2023, 52(5): 31-35.
YANG Yuanyuan, QIN Qingqing, LEI Ting, et al. Effect of the two supporting materials on the structure and properties of the PVDF membranes[J]. Plastics, 2023, 52(5):31-35.
[15] 李成胜, 李雪梅, 何涛. 支撑型复合高分子膜材料的制备与表征[J]. 南京工业大学学报(自然科学版), 2012, 34(1): 85-90.
LI Chengsheng, LI Xuemei, HE Tao. Preparation and characterization of reinforced polymeric membrane with fabric support[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2012, 34(1):85-90.
[1] 刘金鑫, 周雨萱, 朱柏融, 吴海波, 张克勤. 热黏合聚乙烯/聚丙烯双组分纺黏非织造材料性能及其过滤机制[J]. 纺织学报, 2024, 45(01): 23-29.
[2] 杨奇, 刘高慧, 黄琪帏, 胡睿, 丁彬, 俞建勇, 王先锋. 熔喷聚乳酸/聚偏氟乙烯电晕驻极空气过滤材料电荷存储与过滤性能相关性研究[J]. 纺织学报, 2024, 45(01): 12-22.
[3] 谭晶, 石鑫, 于景超, 程礼盛, 杨涛, 杨卫民. 聚合物热解制备玻璃纤维表面碳纳米涂层及其导电性[J]. 纺织学报, 2023, 44(11): 36-44.
[4] 柳敦雷, 陆佳颖, 薛甜甜, 樊玮, 刘天西. 超疏水隔热聚酯纳米纤维/二氧化硅气凝胶复合膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 18-25.
[5] 范洋瑞, 钱建华, 徐凯杨, 王澳, 陶正龙. 基于氯化聚氯乙烯/聚乙烯醇缩丁醛共混膜的界面聚合改性[J]. 纺织学报, 2023, 44(07): 33-41.
[6] 杨潇东, 于斌, 孙辉, 朱斐超, 刘鹏. 聚乙烯三氟氯乙烯熔喷非织造材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(02): 19-26.
[7] 周文, 俞建勇, 张世超, 丁彬. 基于绿色溶剂的聚酰胺纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2023, 44(01): 56-63.
[8] 尹喆, 赵海浪, 徐红, 毛志平, 谭玉静. 纺织品中喹啉含量的快速测定[J]. 纺织学报, 2022, 43(12): 125-130.
[9] 郭珊珊, 郝恩全, 李宏杰, 王霖琳, 蒋金华, 陈南梁. 聚氯乙烯膜结构复合材料的光氧老化行为及评价[J]. 纺织学报, 2022, 43(06): 1-8.
[10] 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69.
[11] 王艳萍, 陈晓倩, 夏伟, 傅佳佳, 高卫东, 王鸿博, ARTUR Cavaco-Paulo. 角质酶在涤纶织物表面改性中的应用[J]. 纺织学报, 2022, 43(05): 136-142.
[12] 高强, 王晓, 郭亚杰, 陈茹, 魏菊. 棉基Ti3C2Tx油水分离膜的制备及其性能[J]. 纺织学报, 2022, 43(01): 172-177.
[13] 许仕林, 杨世玉, 张亚茹, 胡柳, 胡毅. 热塑性聚氨酯/特氟龙无定形氟聚物超疏水纳米纤维膜制备及其性能[J]. 纺织学报, 2021, 42(12): 42-42.
[14] 普丹丹, 傅雅琴. 涤纶织物/聚氯乙烯-中空微珠复合材料的制备及其隔声性能[J]. 纺织学报, 2021, 42(11): 77-83.
[15] 汪泽幸, 李帅, 谭冬宜, 孟硕, 何斌. 循环加载处理对聚氯乙烯涂层膜材料蠕变性能的影响[J]. 纺织学报, 2021, 42(07): 101-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!