纺织学报 ›› 2024, Vol. 45 ›› Issue (01): 23-29.doi: 10.13475/j.fzxb.20220803501

• 纤维材料 • 上一篇    下一篇

热黏合聚乙烯/聚丙烯双组分纺黏非织造材料性能及其过滤机制

刘金鑫1,2, 周雨萱1, 朱柏融1, 吴海波3, 张克勤1()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215021
    2.纺织行业丝绸功能材料与技术重点实验室,江苏 苏州 215123
    3.东华大学 纺织学院, 上海 201620
  • 收稿日期:2022-08-15 修回日期:2023-03-13 出版日期:2024-01-15 发布日期:2024-03-14
  • 通讯作者: 张克勤(1972—),男,教授,博士。主要研究方向为功能性纤维材料。E-mail:kqzhang@suda.edu.cn
  • 作者简介:刘金鑫(1990—),男,讲师,博士。主要研究方向为非织造材料与工艺设计。
  • 基金资助:
    江苏省高校面上项目(21KJD540003);纺织行业丝绸功能材料与技术重点实验室开放课题项目(SDHY2131)

Properties and filtration mechanism of thermal bonding polyethylene/polypropylene bicomponent spunbond nonwovens

LIU Jinxin1,2, ZHOU Yuxuan1, ZHU Borong1, WU Haibo3, ZHANG Keqin1()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. China National Textile and Apparel Council key Laboratory for silk Functional Materials and Technology, Soochow University, Suzhou, Jiangsu 215123, China
    3. College of Textiles,Donghua University, Shanghai 201620, China
  • Received:2022-08-15 Revised:2023-03-13 Published:2024-01-15 Online:2024-03-14

摘要:

为研究热黏合加固技术对双组分纺黏非织造材料结构和性能的影响,以聚乙烯(PE)为皮层组分、聚丙烯(PP)为芯层组分,采取热轧和热风2种热黏合方式制备了PE/PP皮芯型双组分纺黏非织造材料,借助扫描电子显微镜、自动滤料测试仪、孔径测试仪、渗水性测定仪等对2种方法制备的纺黏非织造材料的结构和性能进行测试与表征,并对造成过滤性能不同的原因进行理论分析,阐释纤维滤材的过滤机制。结果表明:随着面密度的增加,热轧黏合纺黏非织造材料的平均孔径逐渐减小,耐静水压逐渐增加,其中面密度为80 g/m2时,平均孔径为25.74 μm,耐静水压为3.14 kPa;热风黏合纺黏非织造材料在低阻力、高容尘、品质因数方面的表现均优于热轧黏合纺黏非织造材料,其中面密度为80 g/m2时,以质量中值直径为0.26 μm的NaCl气溶胶为过滤媒介,在32 L/min的测试流量下,电晕驻极后热风黏合纺黏非织造材料的过滤效率为76.62%,过滤阻力仅为15.85 Pa;纤维过滤材料的孔隙率越大其过滤阻力越小,容尘量越高。

关键词: 聚乙烯, 聚丙烯, 双组分纤维, 纺黏非织造材料, 热黏合, 空气过滤材料, 过滤机制, 电晕驻极

Abstract:

Objective Bicomponent spunbond nonwovens have many unique advantages by virtue of the combination of two components, and are widely used in medical and health materials, battery separators, filter materials, oil-absorbing materials and other fields. The reinforcement method has a great influence on the properties of bicomponent spunbonded nonwovens. However, most of the previous studies focused on the influence of the process parameters of the preparation process on properties of the material, while the research on the reinforcement technology is still less. Therefore, it is imperative to study the effect of thermal bonding reinforcement on the properties of bicomponent spunbond nonwovens.

Method Polyethylene/polypropylene (PE/PP) sheath/core bicomponent spunbond nonwovens were successfully prepared by bicomponent spunbond technology with PE as the sheath component and PP as the core component. By means of scanning electron microscope, the longitudinal and sectional morphology of sheath core fiber was observed. With the help of filter material automatic tester, pore size tester, multi-function electronic fabric strength tester, thickness gauge, water permeability tester, air permeability tester, etc., the structure and performance of the spunbond nonwoven materials with different reinforcement methods were tested and characterized.

Results The surface morphology of the bicomponent fiber is smooth and the core are completely covered. The cross section of the bicomponent fiber presents sheath/core type, and the interface between the sheath component and the core component is obvious. After calender bonding, the rolling point area of the surface bonding of the bicomponent spunbond nonwoven material forms a "filmed" state, while the fibers that are not bonded by the rolling point still maintain the original shape. The bicomponent fibers reinforced by through-air bonding are melted and consolidated at the junction point, and the sheath component PE is melted and bonded with each other under high temperature airflow, while the core component PP still maintains its supporting role. The direction (MD) strength of calender bonding bicomponent samples is greater than the cross direction (CD) strength, while the elongation of CD is greater than the MD elongation. With the increase of surface density, the average pore diameter of the five kinds of spunbond nonwovens with surface density of 20, 35, 50, 65 and 80 g/m2 decreased successively, which were 49.24, 40.37, 34.89, 27.92 and 25.74 μm, respectively. It shows that the stacking of multilayer fiber web increases the number of fibers in unit volume, resulting in smaller pores between fibers. Considering that the porosity will affect the air permeability and water permeability of the material, the air permeability and hydrostatic pressure resistance of the sample are also tested and analyzed here. The results show that with the increase of the surface density of the sample, the air permeability is 3 501.65, 3 389.77, 3 226.64, 2 743.38, and 2 513.20 mm/s, respectively, showing a gradually decreasing trend. The hydrostatic pressure resistance of the five materials is 0.39, 0.92, 1.37, 1.90 and 3.14 kPa respectively, which increases with the increase of area density, which obviously conforms to the influence law of pore diameter change. The through-air bonding bicomponent spunbond nonwovens perform better than the calender bonding samples in terms of low resistance, high dust volume and quality factor. When the test flow is 32 L/min and the median mass diameter of NaCl aerosol is 0.26 μm, the filtration efficiency of through-air bonding bicomponent spunbond nonwovens with a surface density of 80 g/m2 after corona charging treatment is 76.62%, while the filtration resistance is only 15.85 Pa, and the dust holding capacity is 4.82 g/m2. The phenomenon of "growing dendrites" formed by particles trapped and accumulated during the filtration of through-air bonding bicomponent spunbond materials.

Conclusion This paper mainly analyzes the influence of two kinds of thermal bonding reinforcement methods on the properties of the sheath/core bicomponent spunbonded nonwovens, and studies the fiber morphology, mechanical properties, pore size, hydrostatic pressure resistance, permeability, filtration performance and other indicators. Moreover, the filtration mechanism of the bicomponent spunbond nonwovens was analyzed. The filtration performance of the fiber filter material is closely related to the porosity. The larger the porosity, the smaller the filtration resistance and the higher the dust content. It is hoped that this study can provide a reference for the production and performance analysis of bicomponent spunbond nonwovens, and provide a new idea for the design of fiber filter materials.

Key words: polyethylene, polypropylene, bicomponent fiber, spunbond nonwoven material, thermal bonding, air filtration material, filtration mechanism, corona charging

中图分类号: 

  • TS174.8

图1

PE/PP双组分纺黏非织造材料制备工艺流程图 1—皮层组分螺杆;2—芯层组分螺杆;3—过滤网;4—计量系统;5—纺丝箱体;6—单体抽吸;7—侧吹风冷却;8—气流拉伸装置;9—成网帘;10—抽吸装置;11—热黏合装置;12—卷绕装置。"

表1

双组分纺黏非织造材料相关工艺参数"

纺丝组件
温度/℃
计量泵供给量/
(mL·min-1)
单孔挤出量/
(mL· min-1)
侧吹风
温度/℃
拉伸压
力/kPa
预压辊
温度/℃
260 300 0.9 12 200 100

图2

双组分纤维及纺黏非织造材料的SEM照片"

图3

不同面密度热轧黏合材料的力学性能"

表2

不同面密度的热轧黏合材料孔径测试结果"

面密度/(g·m-2) 最大孔径/μm 最小孔径/μm 平均孔径/μm
20 559.62 30.45 49.24
35 414.23 20.36 40.37
50 135.35 15.53 34.89
65 80.27 14.15 27.92
80 75.65 11.78 25.74

表3

热轧黏合材料和热风黏合材料过滤性能对比"

样品名称 过滤效
率/%
过滤阻
力/Pa
品质因
数/Pa-1
容尘量/
(g·m-2)
热轧黏合材料 81.35 60.39 0.028 3.56
热风黏合材料 76.62 15.85 0.092 4.82

图4

热风黏合双组分纺黏非织造材料过滤时颗粒物被捕获堆积形成的“生长树突”现象"

[1] 朵永超, 钱晓明, 郭寻, 等. 中空桔瓣型高收缩聚酯/聚酰胺6超细纤维非织造布的制备及其性能[J]. 纺织学报, 2022, 43(2): 98-104.
DUO Yongchao, QIAN Xiaoming, GUO Xun, et al. Preparation and properties of hollow pie-segmented high shrinkage polyester/polyamide 6 microfiber non-wovens[J]. Journal of Textile Research, 2022, 43(2): 98-104.
[2] 刘金鑫, 张海峰, 张星, 等. 多级拉伸与热定型对聚乙烯/聚丙烯双组分纤维结构和性能的影响[J]. 纺织学报, 2019, 40(5): 24-29.
LIU Jinxin, ZHANG Haifeng, ZHANG Xing, et al. Influence of multistage drawing and heat setting on structure and properties of polyethylene/polypropylene bicomponent fibers[J]. Journal of Textile Research, 2019, 40(5): 24-29.
[3] YEOM B Y, POURDEYHIMI B. Aerosol filtration properties of PA6/PE islands-in-the-sea bicomponent spunbond web fibrillated by high-pressure water jets[J]. Journal of Materials Science, 2011, 46(17): 5761-5767.
doi: 10.1007/s10853-011-5531-7
[4] LIU J X, ZHANG X, ZHANG H F, et al. Low resistance bicomponent spunbond materials for fresh air filtration with ultra-high dust holding capacity[J]. RSC Advances, 2017, 7(69): 43879-43887.
doi: 10.1039/C7RA07694K
[5] 王敏, 韩建, 于斌, 等. 双组分橘瓣型纺粘水刺材料的过滤和力学性能[J]. 纺织学报, 2016, 37(9): 16-20.
WANG Min, HAN Jian, YU Bin, et al. Filtration and mechanical performance of orange petal shape bicomponent spunbond-spunlace nonwoven mate-rials[J]. Journal of Textile Research, 2016, 37(9): 16-20.
[6] PRAHSARN C, KLINSUKHON W, ROUNGPAISAN N, et al. Self-crimped bicomponent fibers containing polypropylene/ethylene octene copolymer[J]. Materials Letters, 2013, 91: 232-234.
doi: 10.1016/j.matlet.2012.09.106
[7] LI Y, JOO C W. Structural factors and physical properties of needle-punched nonwovens based on co-PET/PA bicomponent fibers via alkali treatment[J]. Fibers and Polymers, 2012, 13(4): 456-465.
doi: 10.1007/s12221-012-0456-6
[8] DAI Z J, SU J F, ZHU X M, et al. Multifunctional polyethylene (PE)/polypropylene (PP) bicomponent fiber filter with anchored nanocrystalline MnO2 for effective air purification[J]. J Mater Chem A, 2018, 6(30): 14856-14866.
doi: 10.1039/C8TA03683G
[9] LIU J X, ZHANG H F, GONG H, et al. Polyethylene/polypropylene bicomponent spunbond air filtration materials containing magnesium stearate for efficient fine particle capture[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40592-40601.
[10] LIM H. A review of spun bond process[J]. Journal of Textile and Apparel Technology and Management, 2010, 6(3): 1-13.
[11] NANJUNDAPPA R, BHAT G S. Effect of processing conditions on the structure and properties of polypropylene spunbond fabrics[J]. Journal of Applied Polymer Science, 2005, 98(6): 2355-2364.
doi: 10.1002/app.v98:6
[12] FEDOROVA N, VERENICH S, POURDEYHIMI B. Strength optimization of thermally bonded spunbond nonwovens[J]. Journal of Engineered Fibers and Fabrics, 2007, 2(1): 38-48.
[13] LEE E S, FUNG C C, ZHU Y. Evaluation of a high efficiency cabin air (HECA) filtration system for reducing particulate pollutants inside school buses[J]. Environ Sci Technol, 2015, 49(6): 3358-3365.
doi: 10.1021/es505419m
[14] FISK W J, FAULKNER D, PALONEN J, et al. Performance and costs of particle air filtration technologies[J]. Indoor Air, 2002, 12(4): 223-234.
pmid: 12532754
[15] DAVIES C N. Filtration of aerosols[J]. Journal of Aerosol Science, 1983, 14(2): 147-161.
doi: 10.1016/0021-8502(83)90039-3
[1] 杨奇, 刘高慧, 黄琪帏, 胡睿, 丁彬, 俞建勇, 王先锋. 熔喷聚乳酸/聚偏氟乙烯电晕驻极空气过滤材料电荷存储与过滤性能相关性研究[J]. 纺织学报, 2024, 45(01): 12-22.
[2] 刘亚, 赵晨, 庄旭品, 赵义侠, 程博闻. 基于Polyflow模拟的茂金属聚乙烯纺黏长丝制备及其性能[J]. 纺织学报, 2023, 44(12): 1-9.
[3] 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16.
[4] 王西贤, 郭天光, 王登科, 牛帅, 贾琳. 聚丙烯腈/银复合纳米纤维高效滤膜的制备及其长效性能[J]. 纺织学报, 2023, 44(11): 27-35.
[5] 李修田, 宋伟广, 张丽平, 杜长森, 付少海. 聚酰胺原液着色母粒的制备及其性能[J]. 纺织学报, 2023, 44(11): 45-51.
[6] 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19.
[7] 钱耀威, 殷连博, 李家炜, 杨晓明, 李耀邦, 戚栋明. 聚乙烯基膦酸/多乙烯多胺层层自组装阻燃棉织物的制备及其性能[J]. 纺织学报, 2023, 44(09): 144-152.
[8] 杜姗, 魏云航, 谭宇浩, 吴婷, 李勇, 杨红英, 王明, 周伟涛. 棉织物的硅溶胶/短链含氟聚丙烯酸酯复合拒水整理[J]. 纺织学报, 2023, 44(09): 153-160.
[9] 汪泽幸, 周衡书, 杨敏, 谭冬宜. 不同循环加载路径下黄麻织物/聚乙烯复合材料的变形特性[J]. 纺织学报, 2023, 44(09): 99-107.
[10] 连丹丹, 王镭, 杨雅茹, 尹立新, 葛超, 卢建军. 服用聚苯硫醚纤维的制备及其性能[J]. 纺织学报, 2023, 44(08): 1-8.
[11] 张杏, 叶伟, 龙啸云, 曹海建, 孙启龙, 马岩, 王征. 超高分子量聚乙烯纤维织物/热塑性聚氨酯复合材料的界面黏结性能[J]. 纺织学报, 2023, 44(08): 143-150.
[12] 施静雅, 王慧佳, 易雨青, 李妮. 聚氨酯/聚乙烯醇缩丁醛复合纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 26-33.
[13] 安雪, 刘太奇, 李言, 赵小龙. 牢固结合的多层纳米纤维复合材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 50-56.
[14] 陈露, 吴孟锦, 贾立霞, 阎若思. 氧等离子体改性超高分子量聚乙烯纤维复合材料层间损伤声发射特征分析[J]. 纺织学报, 2023, 44(07): 116-125.
[15] 张晋, 张林军, 解云川, 王健, 贾寅峰, 路涛, 张志成. 防护口罩用改性长效聚(偏氟乙烯-三氟乙烯)压电纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 26-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!