纺织学报 ›› 2023, Vol. 44 ›› Issue (07): 116-125.doi: 10.13475/j.fzxb.20220301701

• 纺织工程 • 上一篇    下一篇

氧等离子体改性超高分子量聚乙烯纤维复合材料层间损伤声发射特征分析

陈露1, 吴孟锦1, 贾立霞1,2, 阎若思1,2()   

  1. 1.河北科技大学 河北省纺织服装技术创新中心, 河北 石家庄 050018
    2.河北科技大学 河北省柔性功能材料重点实验室, 河北 石家庄 050018
  • 收稿日期:2022-03-03 修回日期:2023-04-05 出版日期:2023-07-15 发布日期:2023-08-10
  • 通讯作者: 阎若思(1988—),女,副教授,博士。主要研究方向为功能性纺织复合材料。E-mail:ruosi.yan@hebust.edu.cn
  • 作者简介:陈露(1999—),女,硕士生。主要研究方向为等离子体改性高性能纤维复合材料。
  • 基金资助:
    国家自然科学基金青年基金项目(12202133);河北省高等学校科学技术研究项目(ZD2022025);河北省青年拔尖人才支持计划项目(〔2018〕-27)

Analysis of interlayer damage acoustic emission characteristics of oxygen plasma modified ultra-high molecular weight polyethylene fiber composite materials

CHEN Lu1, WU Mengjin1, JIA Lixia1,2, YAN Ruosi1,2()   

  1. 1. Hebei Technology Innovation Center for Textile and Garment, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
    2. Hebei Key Laboratory of Flexible Functional Materials, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
  • Received:2022-03-03 Revised:2023-04-05 Published:2023-07-15 Online:2023-08-10

摘要:

为研究氧等离子体改性超高分子量聚乙烯(UHMWPE)/乙烯基酯复合材料层间断裂韧性的损伤模式对其界面性能的影响,首先对不同密度UHMWPE织物进行氧等离子体改性,使用真空辅助树脂灌注成型工艺制备UHMWPE/乙烯基酯复合材料,结合声发射(AE)检测技术对复合材料的Ⅰ型层间断裂韧性(GⅠC)和Ⅱ型层间断裂韧性(GⅡC)进行测试,并对其损伤动态演变过程进行表征和定位。结果表明:界面性能是复合材料层间断裂韧性的主导因素,在GⅠC和GⅡC测试过程中,通过在UHMWPE/乙烯基酯复合材料层间预裂纹处产生应力集中,损伤机制表现为张开型和滑移型;低经密UHMWPE织物结构松散,具有良好的改性均匀度,经氧等离子体改性后其制备的复合材料的GⅠC和GⅡC分别提高约36.8%~80%、75%~1 120%,达到层间增韧效果,同时由于界面结合性能提高,不同损伤模式减少或消除;通过对声发射信号进行聚类分析可有效识别出复合材料基体开裂、纤维/基体脱黏和纤维断裂3种损伤模式及其特征频率范围。

关键词: 等离子体改性, 超高分子量聚乙烯, 乙烯基酯, 声发射检测, 复合材料, 层间断裂韧性, 界面性能

Abstract:

Objective As a lightweight fiber-reinforced composite material with high strength and modulus, ultra-high molecular weight polyethylene (UHMWPE) plays an important role in modern aviation, aerospace, marine defense equipment, and other fields. Because its smooth surface is chemically inert and does not contain polar groups, the poor binding with the resin matrix would affect its interface performance. The chemical composition reconstruction on the surface of UHMWPE fiber was carried out by oxygen plasma modification, which effectively provided more polar sites for the interface layer to improve the interface binding performance between UHMWPE fiber and resin matrix.

Method In order to investigate the influence of damage mode on interlayer fracture toughness of oxygen plasma modified UHMWPE/vinyl ester composites. UHMWPE plain fabrics with a weft density of 200 picks/(10 cm) and warp density of 160, 200 and 240 picks/(10 cm) were woven and modified by oxygen plasma. UHMWPE/vinyl ester composites were prepared by vacuum-assisted resin infusion molding (VARI). Mode I (GⅠC) and mode Ⅱ (GⅡC) interlayer fracture toughness tests were carried out. The damage patterns were analyzed by the acoustic emission (AE) technique.

Results After oxygen plasma modification of UHMWPE fabrics, the water contact angle of the fiber surface was found to be reduced (Fig. 2), improving surface energy. For GⅠC, the maximum loads of GⅠC of samples U03 and P03 were 19.49 and 27.05 N, respectively. It was found that the plasma modified GⅠC of sample P03 by 36.8%, and the mode Ⅰ interlayer fracture angles of samples P01 and P03 were 26° and 10°, respectively (Fig. 3). P01 displayed the greatest change in interlayer fracture angle. The GⅠC of UHMWPE/vinyl ester composites was mainly related to the interfacial bonding properties, the woven fabrics structure, the state of the pre-crack tip, and the brittleness of the matrix. During the GⅠC test, AE cumulative energy of UHMWPE/vinyl ester composites increased as the warp density of UHMWPE fabric increased (Fig. 4). Because of the influence of the compact structure of UHMWPE fabric on the uniformity of modification, the interface bonding appeared to be poor. The three damage modes in the process of the GⅠC test responded to acoustic emission of three types of signals, respectively, i.e. Class-1 signal indicating matrix cracking, Class-2 signal fiber/matrix debonding, and Class-3 signal fiber fracture (Fig. 5). After oxygen plasma modification, the intensity of the Class-2 signal was reduced, suggesting improvement in the fiber/matrix bonding. For GⅡC, the maximum loads of GⅡC of samples U03 and P01 were 106.99 and 244.58 N. The plasma modification improved GⅡC of sample U01 by 1 120%, and the minimum crack propagation length of sample P03 became 0.8 mm. The maximum bending fracture angle was 145° (Fig. 7). Sample P01 showed good GⅡC after oxygen plasma modification, and sample P03 demonstrated the smallest crack propagation length and flexural fracture angle. The GⅡC of UHMWPE/vinyl ester composites was mainly related to the interfacial bonding properties, stiffness, the state of the initial crack tip, and the brittleness of the matrix. During the GⅡC test, UHMWPE/vinyl ester composites modified by oxygen plasma delayed the start time of AE as cumulative energy, and different damage modes were reduced or eliminated (Fig. 8). The three AE signals generated by the damage modes during the GⅡC test were the same as those in the GⅠC test (Fig. 9). After oxygen plasma modification, the signal intensity of Class-3 in the sample was reduced, and the fiber fracture was reduced.

Conclusion UHMWPE/vinyl ester composites are prepared by oxygen plasma modification of UHMWPE fabrics with different warp densities, and GⅠC and GⅡC were evaluated. The oxygen plasma modified UHMWPE/vinyl ester composites can effectively strengthen the GⅠC and GⅡC, improve the interface bonding strength and prevent crack propagation. For the loose structure of UHMWPE fabric with low warp density, the uniformity of oxygen plasma modification is the best, which has the effect of interlayer toughening. Three damage modes of UHMWPE/vinyl ester composites in GⅠC and GⅡC tests are detected by acoustic emission testing, which are matrix cracking, fiber/matrix debonding, and fiber fracture. The overlapped signals of the three damage modes in the amplitude distribution interval indicate that the damage does not appear alone, and the appearance of new damage is usually accompanied by the expansion of the previous damage, leading to the simultaneous appearance of different damage modes. Oxygen plasma modification can effectively weaken or eliminate interlayer damage and inhibit interlayer crack propagation.

Key words: plasma modification, ultra-high molecular weight polyethylene, vinyl ester, acoustic emission testing, composite, interlayer fracture toughness, interfacial property

中图分类号: 

  • TB332

表1

氧等离子体改性前后UHMWPE/乙烯基酯复合材料结构参数"

试样
编号
密度/(根·(10 cm)-1) 织物面
密度/
(g·m-2)
复合材料
厚度/
mm
纤维体
积含量/
%
经密 纬密
U01 160 200 130 2.71 49.40
P01 160 200 130 2.35 57.03
U02 200 200 160 3.02 56.30
P02 200 200 160 2.97 57.68
U03 240 200 180 3.15 58.90
P03 240 200 180 3.12 59.48

图1

复合材料层间断裂韧性测试系统及声发射检测试样"

图2

氧等离子体改性前后UHMWPE织物水接触角"

图3

氧等离子体改性前后UHMWPE/乙烯基酯复合材料GIC测试结果"

图4

氧等离子体改性前后UHMWPE/乙烯基酯复合材料GIC测试过程的AE累积能量曲线"

图5

氧等离子体改性前后UHMWPE/乙烯基酯复合材料GⅠC聚类分析结果"

图6

氧等离子体改性前后UHMWPE/乙烯基酯复合材料GⅠC损伤形貌照片(×30)"

图7

氧等离子体改性前后UHMWPE/乙烯基酯复合材料GⅡC测试结果"

图8

氧等离子体改性前后UHMWPE/乙烯基酯复合材料GⅡC测试过程AE累积能量"

图9

氧等离子体改性前后UHMWPE/乙烯基酯复合材料GⅡC聚类分析结果"

图10

氧等离子体改性前后UHMWPE/乙烯基酯复合材料GⅡC损伤形貌SEM照片(×100)"

[1] CHHETRI S, BOUGHERARA H. A comprehensive review on surface modification of UHMWPE fiber and interfacial properties[J]. Composites Part A:Applied Science and Manufacturing, 2021. DOI:10.1016/j.compositesa.2020.106146.
doi: 10.1016/j.compositesa.2020.106146
[2] YAN R, ZHANG Q, SHI B, et al. Investigation on low-velocity impact and interfacial bonding properties of weft-knitted UHMWPE reinforced composites[J]. Journal of Industrial Textiles, 2020. DOI:10.1177/1528083720931474.
doi: 10.1177/1528083720931474
[3] CAI T, ZHAN S, YANG T, et al. Study on the tribological properties of UHMWPE modified by UV-induced grafting under seawater lubrication[J]. Tribology International, 2022. DOI:10.1016/j.triboint.2021.107419.
doi: 10.1016/j.triboint.2021.107419
[4] FANG Z, TU Q, SHEN X, et al. Biomimetic surface modification of UHMWPE fibers to enhance interfacial adhesion with rubber matrix via constructing polydopamine functionalization platform and then depositing zinc oxide nanoparticles[J]. Surfaces and Interfaces, 2022. DOI:10.1016/j.surfin.2022.101728.
doi: 10.1016/j.surfin.2022.101728
[5] CHHETRI S, SARWAR A, STEER J, et al. Design of a bi-layer coating configuration on ultra-high molecular weight polyethylene (UHMWPE) fibre surface to derive synergistic response on interfacial bond strength[J]. Composites Part A: Applied Science and Manufacturing, 2022. DOI:10.1016/j.compositesa.2021.106678.
doi: 10.1016/j.compositesa.2021.106678
[6] 贾彩霞, 王乾, 任荣, 等. 超高分子量聚乙烯(UHMWPE)纤维表面处理对UHMWPE/环氧树脂复合材料界面性能的影响机制[J]. 复合材料学报, 2020, 37(3): 573-580.
JIA Caixia, WANG Qian, REN Rong, et al. Ultra-high molecular weight polyethylene (UHMWPE) fibre effect mechanism of surface treatment on interfacial properties of UHMWPE/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2020, 37(3): 573-580.
[7] 吴孟锦. 氧等离子体改性UHMWPE复合材料的界面及力学性能研究[D]. 石家庄: 河北科技大学, 2021: 23-34.
WU Mengjin. Interfacial and mechanical properties of oxygen plasma-modified UHMWPE reinforced composites[D]. Shijiazhuang: Hebei University of Science and Technology, 2021: 23-34.
[8] WU M, JIAIA L, LU S, et al. Interfacial performance of high-performance fiber-reinforced composites improved by cold plasma treatment: a review[J]. Surfaces and Interfaces, 2021. DOI:10.1016/j.surfin.2021.101077.
doi: 10.1016/j.surfin.2021.101077
[9] 杜晓冬, 林芳兵, 蒋金华, 等. 氧等离子体改性对聚酰亚胺纤维表面性能的影响[J]. 纺织学报, 2019, 40(9): 22-27.
DU Xiaodong, LIN Fangbing, JIANG Jinhua, et al. Effect of oxygen plasma modification on surface properties of polyimide fiber[J]. Journal of Textile Research, 2019, 40(9): 22-27.
[10] ZHAN W, CAO Y, YANG P, et al. Manufacturing and interfacial bonding behavior of plasma-treated-carbon fiber reinforced veneer-based composites[J]. Composite Structures, 2019. DOI:10.1016/j.compstruct.2019.111203.
doi: 10.1016/j.compstruct.2019.111203
[11] RODRIGUES M M, FONTOURA C P, GARCIA C S C, et al. Investigation of plasma treatment on UHMWPE surfaces: impact on physicochemical properties, sterilization and fibroblastic adhesion[J]. Material Science & Engineering C, 2019, 102: 264-275.
[12] KOSTAGIANNAKOPOULOU C, LOUTAST H, SOTIRIADIS G, et al. On the interlaminar fracture toughness of carbon fiber composites enhanced with graphene nano-species[J]. Composites Science and Technology, 2015, 118: 217-225.
doi: 10.1016/j.compscitech.2015.08.017
[13] SAEEDIFAR M, FOTOUHI M, NAJAFABADI M A, et al. Prediction of quasi-static delamination onset and growth in laminated composites by acoustic emission[J]. Composites Part B: Engineering, 2016, 85: 113-122.
doi: 10.1016/j.compositesb.2015.09.037
[14] 张燕南, 周伟, 商雅静, 等. 三维编织复合材料拉伸微变形的测量与损伤破坏声发射监测[J]. 纺织学报, 2019, 40(8): 55-63.
ZHANG Yannan, ZHOU Wei, SHANG Yajing, et al. Measurement of tensile microdeformation and acoustic emission monitoring of damage and failure of three-dimensional braided composites[J]. Journal of Textile Research, 2019, 40(8): 55-63.
[15] ZHANG Y, ZHOU B, YU F, et al. Class analysis of acoustic emission signals and infrared thermography for defect evolution analysis of glass/epoxy composites[J]. Infrared Physics & Technolgy, 2021. DOI:10.1016/j.infrared.2020.103581.
doi: 10.1016/j.infrared.2020.103581
[16] 王旭, 晏雄. 聚乙烯自增强复合材料损伤行为的声发射特征[J]. 纺织学报, 2010, 31 (3): 27-31.
WANG Xu, YAN Xiong. Acoustic emission characteristics of damage behavior of polyethylene self-reinforced composites[J]. Journal of Textile Research, 2010, 31 (3): 27-31.
[17] JIANG Y, LI J, LIU F, et al. The effects of surface modification using O2 low temperature plasma on chrome tanning properties of natural leather[J]. Journal of Industrial Textiles, 2019, 49(4): 534-547.
doi: 10.1177/1528083718804205
[18] SHELLY D, NANDA T, MEHTA R. Addition of compatibilized nanoclay and UHMWPE fibers to epoxy based GFRPs for improved mechanical properties[J]. Composites Part A: Applied Science and Manufacturing, 2021. DOI:10.1016/j.compositesa.2021.106371.
doi: 10.1016/j.compositesa.2021.106371
[19] OZASLAN E, YETGIN A, ACAR B, et al. Damage mode identification of open hole composite laminates based on acoustic emission and digital image correlation methods[J]. Composite Structures, 2021. DOI:10.1016/j.compstruct.2021.114299.
doi: 10.1016/j.compstruct.2021.114299
[20] RAMIREZ J, HALM D, GRANDIDIER J. Assessment of a damage model for wound composite structures by acoustic emission[J]. Composite Structures, 2019, 214: 414-421.
doi: 10.1016/j.compstruct.2019.01.093
[21] BARILE C, CASAVOLA C, PAPPALETTERA G, et al. Damage characterization in composite materials using acoustic emission signal-based and parameter-based data[J]. Composite Part B: Engineering, 2019. DOI:10.1016/j.compositesb.2019.107469.
doi: 10.1016/j.compositesb.2019.107469
[22] MOHAMMADI R, NAJAFABADI M A, SAGHAFI H, et al. A quantitative assessment of the damage mechanisms of CFRP laminates interleaved by PA66 electrospun nanofibers using acoustic emission[J]. Composite Structures, 2021. DOI: 10.1016/j.compstruct.2020.113395.
doi: 10.1016/j.compstruct.2020.113395
[1] 段成红, 吴港本, 罗翔鹏. 基于DIGIMAT的碳纤维增强环氧树脂编织复合材料的力学性能[J]. 纺织学报, 2023, 44(07): 126-131.
[2] 杨金, 李麒阳, 季霞, 孙以泽. 复合材料编织-缠绕-拉挤系统建模及其控制策略[J]. 纺织学报, 2023, 44(07): 199-206.
[3] 李皎, 陈利, 姚天磊, 陈小明. 类回转预制体针刺机器人系统设计[J]. 纺织学报, 2023, 44(07): 207-213.
[4] 夏良君, 曹根阳, 刘欣, 徐卫林. 高性能纤维及其制品颜色构建的研究进展[J]. 纺织学报, 2023, 44(06): 1-9.
[5] 吕钧炜, 罗龙波, 刘向阳. 基于直接氟化技术的芳纶表/界面结构设计与制备研究进展[J]. 纺织学报, 2023, 44(06): 21-27.
[6] 韦玉辉, 郑晨, 程尔骕, 赵书涵, 苏兆伟. 光催化自清洁芳纶织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 171-176.
[7] 周泠卉, 曾佩, 鲁瑶, 付少举. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(03): 73-78.
[8] 刘东炎, 郑成燕, 王晓旭, 钱坤, 张典堂. 超高分子量聚乙烯织物/聚脲柔性复合材料的抗破片侵彻机制[J]. 纺织学报, 2023, 44(03): 79-87.
[9] 冯帅博, 强荣, 邵玉龙, 杨啸, 马茜, 陈博文, 陈熠, 高明洋, 陈彩虹. 丝瓜络衍生碳纤维基复合材料的电磁波吸收性能[J]. 纺织学报, 2023, 44(02): 69-75.
[10] 蔡洁, 王亮, 傅宏俊, 钟智丽. 玻璃纤维/碳纤维织物基复合材料的电磁屏蔽性能[J]. 纺织学报, 2023, 44(02): 111-117.
[11] 丁娟, 刘阳, 张晓飞, 郝克倩, 宗蒙, 孔雀. Fe/C多孔碳材料制备及其涂层棉织物的吸波性能[J]. 纺织学报, 2023, 44(02): 191-198.
[12] 段亚弟, 谢巍杰, 邱海鹏, 王晓猛, 王岭, 张典堂, 钱坤. 界面层对三维机织角联锁SiCf/SiC复合材料断裂韧性的影响[J]. 纺织学报, 2023, 44(01): 119-128.
[13] 应志平, 王伟青, 吴震宇, 胡旭东. 三维正交机织复合材料的冲后压缩性能[J]. 纺织学报, 2023, 44(01): 129-135.
[14] 张书诚, 邢剑, 徐珍珍. 基于废弃聚苯硫醚滤料的多层吸声材料制备及其性能[J]. 纺织学报, 2022, 43(12): 35-41.
[15] 苏子越, 单颖法, 巫莹柱, 秦介垚, 彭美婷, 王晓梅, 黄美林. 碳纤维织物基形状记忆复合材料的制备及其性能[J]. 纺织学报, 2022, 43(11): 75-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!