纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 69-75.doi: 10.13475/j.fzxb.20220809007
冯帅博1, 强荣1,2(
), 邵玉龙3, 杨啸1, 马茜1, 陈博文1, 陈熠1, 高明洋1, 陈彩虹1
FENG Shuaibo1, QIANG Rong1,2(
), SHAO Yulong3, YANG Xiao1, MA Qian1, CHEN Bowen1, CHEN Yi1, GAO Mingyang1, CHEN Caihong1
摘要:
为解决当前多孔磁性碳基吸波材料制备工艺繁杂、能耗高、环境不友好等问题,提出基于多孔生物质源衍生的绿色环保策略。以高孔隙丝瓜络为前驱体,Co2+为金属源,二甲基咪唑为配体,经配位自组装获得丝瓜络/金属有机骨架结构复合材料,并经高温煅烧得到碳纤维基钴/碳(LS-Co/C)复合材料。结果表明:在800 ℃煅烧后,LS-Co/C展现了优异的吸波性能,厚度为1.5 mm时有效吸收带宽为5.2 GHz (12.8~18.0 GHz),其良好的吸波特性得益于错综复杂的三维多孔网络结构为电磁波提供了适宜的损耗空间,在电磁场作用下产生感应电流,并在碳纤维导电网络中快速衰减,同时钴/碳复合材料与碳纤维形成的多重界面极化助力电磁波进一步衰减。该研究将为新型多孔磁性碳基吸波材料的设计开发提供策略。
中图分类号:
| [1] |
WU Z, CHENG H W, JIN C, et al. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption[J]. Advanced Materials, 2022.DOI: 10.1002/adma.202107538.
doi: 10.1002/adma.202107538 |
| [2] |
WANG L, HUANG M, QIAN X, et al. Confined magnetic-dielectric balance boosted electromagnetic wave absorption[J]. Small, 2021.DOI: 10.1002/smll.202100970.
doi: 10.1002/smll.202100970 |
| [3] |
CHENG J, ZHANG H, NING M, et al. Emerging materials and designs for low-and multi-band electromagnetic wave absorbers: the search for dielectric and magnetic synergy?[J]. Advanced Functional Materials, 2022.DOI:10.1002/adfm.202200123.
doi: 10.1002/adfm.202200123 |
| [4] |
LIU W, SHAO Q, JI G, et al. Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber[J]. Chemical Engineering Journal, 2017, 313:734-744.
doi: 10.1016/j.cej.2016.12.117 |
| [5] |
LI Z J, HOU Z L, SONG W L, et al. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption[J]. Nanoscale, 2016, 8(19): 10415-10424.
doi: 10.1039/C6NR00223D |
| [6] |
QIANG R, DU Y, ZHAO H, et al. Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption[J]. Journal of Materials Chemistry A, 2015, 3(25): 13426-13434.
doi: 10.1039/C5TA01457C |
| [7] |
QIANG R, DU Y, CHEN D, et al. Electromagnetic functionalized Co/C composites by in situ pyrolysis of metal-organic frameworks (ZIF-67)[J]. Journal of Alloys and Compounds, 2016, 681:384-393.
doi: 10.1016/j.jallcom.2016.04.225 |
| [8] |
LIU D, QIANG R, DU Y, et al. Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption[J]. Journal of Colloid and Interface Science, 2018, 514:10-20.
doi: S0021-9797(17)31403-0 pmid: 29227802 |
| [9] |
MA W, HE P, XU J, et al. Self-assembly magnetized 3D hierarchical graphite carbon-based heterogeneous yolk-shell nanoboxes with enhanced microwave absorption[J]. Journal of Materials Chemistry A, 2022, 10(21): 11405-11413.
doi: 10.1039/D2TA01798A |
| [10] | WU Z, TIAN K, HUANG T, et al. Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance[J]. ACS Applied Materials & Interfaces, 2018, 10(13): 11108-11115. |
| [11] |
ZHAO H, CHENG Y, LV H, et al. A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption[J]. Carbon, 2019, 142:245-253.
doi: 10.1016/j.carbon.2018.10.027 |
| [12] |
QIANG R, FENG S, CHEN Y, et al. Recent progress in biomass-derived carbonaceous composites for enhanced microwave absorption[J]. Journal of Colloid and Interface Science, 2022, 606:406-423.
doi: 10.1016/j.jcis.2021.07.144 |
| [13] |
LIU P, GAO S, ZHANG G, et al. Hollow engineering to Co@N-Doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption[J]. Advanced Functional Materials, 2021.DOI: 10.1002/adfm.202102812.
doi: 10.1002/adfm.202102812 |
| [14] |
DONG Y, ZHU X, PAN F, et al. Fire-retardant and thermal insulating honeycomb-like NiS2/SnS2 nano-sheets @3D porous carbon hybrids for high-efficiency electromagnetic wave absorption[J]. Chemical Engineering Journal, 2021.DOI: 10.1016/j.cej.2021.131272.
doi: 10.1016/j.cej.2021.131272 |
| [15] |
DONG Y, ZHU X, PAN F, et al. Implanting NiCo2O4 equalizer with designable nanostructures in agaric aerogel-derived composites for efficient multiband electromagnetic wave absorption[J]. Carbon, 2022, 190:68-79.
doi: 10.1016/j.carbon.2022.01.008 |
| [16] |
ZHANG X, DONG Y, PAN F, et al. Electrostatic self-assembly construction of 2D MoS2 wrapped hollow Fe3O4 nanoflowers@1D carbon tube hybrids for self-cleaning high-performance microwave absorbers[J]. Carbon, 2021, 177:332-343.
doi: 10.1016/j.carbon.2021.02.092 |
| [17] |
FANG X, LI W, CHEN X, et al. Controlling the microstructure of biomass-derived porous carbon to assemble structural absorber for broadening band-width[J]. Carbon, 2022, 198:70-79.
doi: 10.1016/j.carbon.2022.06.074 |
| [1] | 柳浩, 马万彬, 栾一鸣, 周岚, 邵建中, 刘国金. 光子晶体结构生色碳纤维/涤纶混纺纱线的制备及其性能[J]. 纺织学报, 2023, 44(02): 159-167. |
| [2] | 蔡洁, 王亮, 傅宏俊, 钟智丽. 玻璃纤维/碳纤维织物基复合材料的电磁屏蔽性能[J]. 纺织学报, 2023, 44(02): 111-117. |
| [3] | 付玮康, 郭筱洁, 潘孟涛, 宋聚滟, 奚柏君. 柳絮纤维生物质炭的制备及其对染料废液中Cr(Ⅵ)的吸附性能[J]. 纺织学报, 2022, 43(12): 8-15. |
| [4] | 苏子越, 单颖法, 巫莹柱, 秦介垚, 彭美婷, 王晓梅, 黄美林. 碳纤维织物基形状记忆复合材料的制备及其性能[J]. 纺织学报, 2022, 43(11): 75-80. |
| [5] | 方周倩, 苗沛源, 金肖克, 祝成炎, 田伟. 碳纤维复合材料孔洞损伤超声波C扫描无损检测[J]. 纺织学报, 2022, 43(10): 71-76. |
| [6] | 徐铭涛, 嵇宇, 仲越, 张岩, 王萍, 眭建华, 李媛媛. 碳纤维/环氧树脂基复合材料增韧改性研究进展[J]. 纺织学报, 2022, 43(09): 203-210. |
| [7] | 王静, 娄娅娅, 王春梅. 铁基金属–有机框架材料/活性碳纤维复合材料的制备及其对染料的脱色[J]. 纺织学报, 2022, 43(08): 126-131. |
| [8] | 吴瑕, 姚菊明, 王琰, RIPON Das, JIRI Militky, MOHANAPRIYA Venkataraman, 祝国成. 碳纤维复合材料无人机叶片的仿真与分析[J]. 纺织学报, 2022, 43(08): 80-87. |
| [9] | 张广知, 方进. 生物质环保阻燃剂PD的制备及其阻燃性能[J]. 纺织学报, 2022, 43(07): 90-96. |
| [10] | 牛雪娟, 徐妍慧. 不同流通间隙排布条件下碳纤维束展纤行为研究[J]. 纺织学报, 2022, 43(06): 165-170. |
| [11] | 吴洋, 刘方恬, 曹孟杰, 崔金海, 邓红兵. 生物质纤维医用敷料研究进展[J]. 纺织学报, 2022, 43(03): 8-16. |
| [12] | 谷元慧, 周红涛, 张典堂, 刘景艳, 王曙东. 碳纤维增强编织复合材料圆管的扭转力学性能及其损伤机制[J]. 纺织学报, 2022, 43(03): 95-102. |
| [13] | 林美霞, 王嘉雯, 肖爽, 王晓云, 刘皓, 何崟. 高灵敏超压缩生物基炭化材料柔性压力传感器的制备及其性能[J]. 纺织学报, 2022, 43(02): 61-68. |
| [14] | 强荣, 冯帅博, 马茜, 陈博文, 陈熠. 钴/碳纤维复合材料的制备及其吸波性能[J]. 纺织学报, 2022, 43(02): 30-36. |
| [15] | 骆晓蕾, 刘琳, 姚菊明. 纯生物质纤维素气凝胶的制备及其阻燃性能[J]. 纺织学报, 2022, 43(01): 1-8. |
|