纺织学报 ›› 2023, Vol. 44 ›› Issue (03): 79-87.doi: 10.13475/j.fzxb.20220303809

• 纺织工程 • 上一篇    下一篇


刘东炎, 郑成燕, 王晓旭, 钱坤, 张典堂()   

  1. 生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
  • 收稿日期:2022-03-09 修回日期:2022-10-04 出版日期:2023-03-15 发布日期:2023-04-14
  • 通讯作者: 张典堂(1986—),男,副研究员,博士。主要研究方向为先进纺织复合材料设计及制造。E-mail:zhangdiantang@jiangnan.edu.cn
  • 作者简介:刘东炎(1999—),男,硕士生。主要研究方向为先进纺织复合材料。
  • 基金资助:

Projectile penetration mechanism of ultra-high molecular weight polyethylene fabric/polyurea flexible composites

LIU Dongyan, ZHENG Chengyan, WANG Xiaoxu, QIAN Kun, ZHANG Diantang()   

  1. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2022-03-09 Revised:2022-10-04 Published:2023-03-15 Online:2023-04-14


为研究平纹机织叠层和三维角联锁增强聚脲柔性复合材料的抗侵彻性能,以15 mm角联锁整体织物及叠层平纹织物(单层厚度0.39 mm,40层)为研究对象,通过表面喷涂聚脲制备2种不同织物结构的超高分子量聚乙烯(UHMWPE)织物/聚脲柔性复合材料;采用1.1 g柱状楔形破碎片,开展了弹道侵彻实验,并获取了弹道极限速度和比吸能;在此基础上,借助超景深显微镜及计算机断层扫描仪,观察侵彻后UHMWPE织物/聚脲柔性复合材料的表面及内部损伤形貌,分析抗破片侵彻机制。研究结果表明:UHMWPE织物/聚脲柔性复合材料抗破片侵彻性能具有明显的织物结构效应;相较于同厚度的叠层平纹织物增强聚脲柔性复合材料,角联锁织物增强聚脲柔性复合材料的弹道极限速度提升了4.9%;对于未被穿透的UHMWPE织物/聚脲柔性复合材料,其被侵彻过程主要包括聚脲对破片的包裹、剪切冲塞和纤维拉伸断裂破坏;叠层平纹织物的主要失效模式为剪切冲塞、分层失效,角联锁织物主要为纤维拉伸变形、拉伸断裂破坏。

关键词: 角联锁织物, 柔性复合材料, 破片侵彻, 弹道极限速度, Micro-CT技术, 超高分子量聚乙烯


Objective Fragmented pieces resulted from explosion on doors, windows and walls are hidden dangers threatening people's life and safety. At present, the explosion-proof equipment is used for high-efficiency, high-speed and large-area protection. Ultra-high molecular weight polyethylene (UHMWPE) fabric/polyurea flexible composites received much attention recently owing to their low density, high performance, flexibility, corrosion resistance, outstanding intrusion resistance and portability. Therefore, it is important to understand the damage mechanism of UHMWPE fabric/polyurea flexible composites under the high-speed impact of broken fragments for engineering applications.

Method 15 mm angle-interlocked monolithic fabrics and laminated plain fabrics (single layer thickness of 0.39 mm, 40 layers) were used in this research. Flexible composites were manufactured by surface spraying with polyurea, named 2D-C and 3D-C, respectively. A 1.1 g wedge-headed cylindrical projectile was adopted to impact on the two types of UHMWPE fabric/polyurea flexible composites to obtain the ballistic limiting velocity V50, the specific energy absorption (SEA) and the backface deformation. Based on this, surface and internal damage morphology studies were carried out to reveal the intrusion damage mechanism.

Results In case of equal thickness, 3D-C panel demonstrates greater V50 and SEA values and a wider overall area of deformation on the backface with greater depth of backface signature. This is related to the fact that the binding warp yarns in the angle-interlock fabrics can transmit stress waves in the thick direction. In addition, the damage to the polyurea surface is minor for both types of composites. At the same time, computed tomo-graphy (CT) scans were carried out in the warp, weft, and thick directions of the local areas of the non-penetrating bullet holes of the two types of composites to study the penetration process and damage patterns in the non-penetrating state. In the thickness direction, the annular stripes near the 3D-C bullet holes is relatively denser and more pronounced, which is related to the fact that shock waves propagate faster in angle-interlock fabrics and that more yarns are involved in the energy dissipation. Cross-sectional profiles of 2D-C and 3D-C illustrate that 2D-C damage areas are dominated by massive fiber compression shear damage in both the warp and weft cross-sections at the upper end of the bullet hole. The compression shear damage to the fibers at the upper end of the 3D-C perforations is less severe than in 2D-C, but the tensile deformation of the top layer fibers is clearly visible in almost every cut. At the same time, four main types of damage areas were obtained by observing and counting the damage morphology of the two types of composites, and they are the perforated zone of the polyurea layer (Zone 1), the zone where the broken piece is caught (Zone 2), and the zone where the left and right sides of the broken piece are subjected to shearing and stretching (Zone 3, Zone 4). it can be seen that along the weft and warp directions after chip penetration 2D-C accounted for 54.82% and 69.98% of the damage in Zone 2. Cross-sectional view of 2D-C and 3D-C. However, 3D-C accounts for relatively little of the damage in Zone 2, with the main areas of damage being Zone 3 and Zone 4.

Conclusion The study showed that the resistance of the UHMWPE/polyurea flexible composites to projectile penetration has a significant fabric structure effect. The ballistic limiting velocity of the angle-interlock fabric-reinforced polyurea flexible composite is increased by 4.9% compared to that of the laminated plain fabric-reinforced polyurea flexible composite of the same thickness. For the unpenetrated UHMWPE/polyurea flexible composites, the penetration process involves mainly polyurea wrapping around the projectile, shear punching and fiber tensile fracture damage. The main failure modes for laminated plain fabrics are shear punch plugging and delamination failure, which for angle-interlock fabrics are mainly fiber tensile deformation and tensile fracture damage.

Key words: angle-interlocked fabric, flexible composite, projectile penetration, ballistic limit velocity, micro-CT technology, ultra-high molecular weight polyethylene


  • TB332





织物类型 尺寸/
(根·(10 cm)-1)
(根·(10 cm)-1)
层数 厚度/mm 总质量/g
叠层平纹织物 300×300 133 133 68 73 169 40 15.31 606.32
角联锁织物 300×300 133 133×2 80 30 7438.1 1 15.34 660.81



(25±2) ℃
(cm3·(1.61 km)-1)
15 ≤10 ≥20 ≥65 ≤0.36 ≥5.5 ≥380 0.75~0.85



试样类型 弹孔编号 弹片速度/(m·s-1) 弹击结果 V50/(m·s-1) SEA/(J·m3·kg-1) 损伤面积/mm2
2D-C 1 568.667 未穿透 559.2 272.01 1 450.68
2 569.476 未穿透 1 450.68
3 579.039 未穿透 1 450.68
4 585.138 穿透 1 884.96
5 586.338 穿透 1 727.88
6 606.466 穿透 1 507.97
3D-C a 600.420 未穿透 587.1 280.88 1 950.93
b 605.327 未穿透 2 186.55
c 609.570 未穿透 3 392.92
d 617.284 穿透 3 298.67
e 632.111 穿透 2 799.16
f 652.742 穿透 3 647.39

















纬向局部破坏区域占最大破坏区域的比值/% 经向局部破坏区域占最大破坏区域的比值/%
Zone1 Zone2 Zone3 Zone4 Zone1 Zone2 Zone3 Zone4
2D-C 15.56 28.02 16.4 54.82 7.07 38.11 21.66 69.98 19.3 10.71
3D-C 10.36 17.27 16.62 20.52 30 35.5 14.31 38.04 35.55 26.4
[1] 张典堂. 超高分子量聚乙烯纤维复合材料冲击性能和弹道侵彻的实验研究[D]. 天津: 天津工业大学, 2012: 3-4.
ZHANG Diantang. Experimental study on impact properties and ballistic penetration of ultra-high molecular weight polyethylene fiber composites[D]. Tianjin: Tiangong University, 2012: 3-4.
[2] ABTEW M A, BOUSSU F, BRUNIAUX P, et al. Ballistic impact mechanisms: a review on textiles and fibre-reinforced composites impact responses[J]. Composite Structures, 2019, 223(9): 1-41.
[3] O'MASTA M R, COMPTON B G, GAMBLE E A, et al. Ballistic impact response of an UHMWPE fiber reinforced laminate encasing of an aluminum-alumina hybrid panel[J]. International Journal of Impact Engineering, 2015, 86: 131-144.
doi: 10.1016/j.ijimpeng.2015.08.003
[4] MOHOTTI D, NGO T, MENDIS P, et al. Polyurea coated composite aluminium plates subjected to high velocity projectile impact[J]. Materials & Design, 2013, 52(24): 1-16.
doi: 10.1016/j.matdes.2013.05.060
[5] IQBAL N, TRIPATHI M, PARTHASARATHY S, et al. Polyurea coatings for enhanced blast-mitigation: a review[J]. RSC Advances, 2016, 6(111): 109706-109717.
doi: 10.1039/C6RA23866A
[6] CHEESEMAN B A, BOGETTI T A. Ballistic impact into fabric and compliant composite laminates[J]. Composite Structures, 2003, 61(1): 161-173.
doi: 10.1016/S0263-8223(03)00029-1
[7] SHANAZARI H, LIAGHAT G H, HADAVINIA H, et al. Analytical investigation of high-velocity impact on hybrid unidirectional/woven composite panels[J]. Journal of Thermoplastic Composite Materials, 2016, 30(4): 545-563.
doi: 10.1177/0892705715604680
[8] LANGSTON T. An analytical model for the ballistic performance of ultra-high molecular weight polyethylene composites[J]. Composite Structures, 2017, 179: 245-257.
doi: 10.1016/j.compstruct.2017.07.074
[9] SAPOZHNIKOV S B, KUDRYAVTSEV O A, ZHIKHAREV M V. Fragment ballistic performance of homogenous and hybrid thermoplastic composites[J]. International Journal of Impact Engineering, 2015, 81: 8-16.
doi: 10.1016/j.ijimpeng.2015.03.004
[10] 何业茂, 焦亚男, 周庆, 等. 超高分子量聚乙烯纤维/水性聚氨酯复合材料层压板抗软钢芯弹侵彻性能及其损伤机制[J]. 复合材料学报, 2021, 38(5): 1455-1467.
HE Yemao, JIAO Yanan, ZHOU Qing, et al. Mild steel core penetration resistance and damage mechanism of ultra-high molecular weight polyethylene fiber/waterborne polyurethane composite laminates[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1455 -1467.
[11] 翁浦莹, 康凌峰, 孔春凤, 等. 组合式三维机织复合材料的制备及其抗高速冲击性能[J]. 纺织学报, 2016, 37(3): 60-65.
WENG Puying, KANG Lingfeng, KONG Chunfeng, et al. Preparation of combined three-dimensional woven composites and their high-speed impact resistance[J]. Joural of Textile Research, 2016, 37(3): 60-65.
[12] FLANAGAN M P, ZIKPY M A, WALL J W, et al. An experimental investigation of high velocity impact and penetration failure modes in textile composites[J]. Journal of Composite Materials, 1999, 33(12): 1080-1103.
doi: 10.1177/002199839903301202
[13] BANDARU A K, AHMAD S, BHATNAGAR N. Ballistic performance of hybrid thermoplastic composite armors reinforced with Kevlar and basalt fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2017, 97: 151-165.
doi: 10.1016/j.compositesa.2016.12.007
[14] LIU Q, GUO B, CHEN P, et al. Investigating ballistic resistance of CFRP/polyurea composite plates subjected to ballistic impact[J]. Thin-Walled Structures, 2021, 166: 108-111.
[15] 赵鹏铎, 黄阳洋, 王志军, 等. 聚脲涂层复合结构抗破片侵彻效能研究[J]. 兵器装备工程学报, 2018, 39(8): 1-7.
ZHAO Pengyi, HUANGYangyang, WANG Zhijun, et al. Study on antifragment penetration efficiency of polyurea coating composite structure[J]. Journal of Weapons and Equipment Engineering, 2018, 39(8): 1-7.
[16] 郑成燕, 宗晟, 张典堂, 等. 织物/聚脲柔性复合材料抗破片侵彻行为[J]. 材料科学与工程学报, 2022, 40(2): 269-276.
ZHENG Chengyan, ZONG Sheng, ZHANG Diantang, et al. Antifragment penetration behavior of fabric/polyurea flexible composites[J]. Journal of Materials Science and Engineering 2022, 40(02): 269-276.
[17] 侯仰青, 赵莉. 三维角链锁机织物弹道侵彻性能实验研究[J]. 纤维复合材料, 2010, 27(2): 25-29.
HOU Yangqing, ZHAO Li. Experimental study of the ballistic penetration performance of 3D angle-interlock woven fabric[J]. Fiber Composites, 2010, 27(2) : 25-29.
[18] NAIK N K, SHRIRAO P, REDDY B C K. Ballistic impact behaviour of woven fabric composites: formulation[J]. International Journal of Impact Engineering, 2006, 32(9): 1521-52.
doi: 10.1016/j.ijimpeng.2005.01.004
[19] 陈磊, 徐志伟, 李嘉禄, 等防弹复合材料结构及其防弹机制[J]. 材料工程, 2010 (11) : 94-100.
CHEN Lei, XU Zhiwei, LI Jialu, et al. Structure and bullet-proof mechanism of ballistic composites[J]. Journal of Materials Engineering, 2010 (11) : 94-100.
[1] 张志颖, 王亦秋, 眭建华. 超高分子量聚乙烯纤维增强中空蜂窝模压复合材料性能研究[J]. 纺织学报, 2022, 43(11): 81-87.
[2] 王秋实, 何彩婷, 王珊, 陈美玉, 梁高勇, 孙润军. 织物增强柔性防刺复合材料的研究进展[J]. 纺织学报, 2022, 43(08): 183-188.
[3] 王菊, 张丽平, 王晓春, 杨萌阳. 高疏水性染料的制备及其对超高分子量聚乙烯织物的染色性能[J]. 纺织学报, 2022, 43(04): 97-101.
[4] 陈小明, 李皎, 张一帆, 谢军波, 姚天磊, 陈利. 基于上位机的层间角联锁织物用织机开口控制系统设计[J]. 纺织学报, 2022, 43(04): 174-179.
[5] 李凤艳, 叶天宇, 展晓晴, 赵健, 李聃阳, 王瑞. 涤纶与芳纶及超高分子量聚乙烯纤维复合纱防刺织物的制备及其性能[J]. 纺织学报, 2021, 42(07): 82-88.
[6] 杨甜甜, 王岭, 邱海鹏, 王晓猛, 张典堂, 钱坤. 三维机织角联锁SiCf/SiC复合材料弯曲性能及损伤机制[J]. 纺织学报, 2020, 41(12): 73-80.
[7] 杨雅茹, 沈小军, 唐柏林, 牛梅. 超高分子量聚乙烯纤维的无卤阻燃整理[J]. 纺织学报, 2020, 41(11): 109-115.
[8] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[9] 张恒宇, 张宪胜, 肖红, 施楣梧. 二维碳化物在柔性电磁吸波领域的研究进展[J]. 纺织学报, 2020, 41(03): 182-187.
[10] 王晓春, 张健飞, 张丽平, 王娜娜, 闫金龙, 赵国樑. 高疏水染料结构对超高分子量聚乙烯纤维染色性能的影响[J]. 纺织学报, 2020, 41(03): 78-83.
[11] 吴利伟, 王伟, 林佳弘, 姜茜. 芳纶/超高分子量聚乙烯织物增强聚氨酯夹芯复合材料制备及其力学性能[J]. 纺织学报, 2019, 40(07): 64-70.
[12] 李娜娜, 鲁清晨, 尹巍巍, 肖长发. 冷却温度对聚偏氟乙烯/超高分子量聚乙烯共混中空纤维膜结构与性能的影响[J]. 纺织学报, 2019, 40(07): 8-12.
[13] 陆振乾 许玥. 剪切增稠液浸渍超高分子量聚乙烯织物的防锥刺性能[J]. 纺织学报, 2018, 39(10): 58-62.
[14] 张恒 甄琪 钱晓明 刘让同 张一风. 仿生树型超高分子量聚乙烯柔性防刺复合材料制备及其透湿性能[J]. 纺织学报, 2018, 39(04): 63-68.
[15] 杜晗笑 郑振荣 曹森学 陈逢亮. 超疏水气凝胶涂层超高分子量聚乙烯织物的制备与表征[J]. 纺织学报, 2018, 39(04): 93-99.
Full text



No Suggested Reading articles found!