纺织学报 ›› 2016, Vol. 37 ›› Issue (11): 19-25.

• 纤维材料 • 上一篇    下一篇

棉纤维集合体压缩力传递与密度关系

  

  • 收稿日期:2016-02-17 修回日期:2016-06-09 出版日期:2016-11-15 发布日期:2016-11-23

Research on compressive force transmission properties and densities-mechanical properties model of cotton fiber assembly

  • Received:2016-02-17 Revised:2016-06-09 Online:2016-11-15 Published:2016-11-23

摘要:

为分析棉纤维集合体的压缩力传递特性,在万能试验机上对棉纤维集合体进行压缩试验,用压力传感系统采集受压棉纤维集合体上、中、下3 层的压强,分析传感器采集的压缩强度与棉纤维集合体应变、相对密度的关系。试验结果表明:随着棉纤维集合体应变的增加,其各层压强值均增加; 各层棉纤维集合体压强值由上而下呈降低趋势,层间存在显著压强差。分析棉纤维集合体的密度力学性能发现,其相对密度与压强之间呈极佳的线性关系,即棉随着纤维集合体相对密度的增加,各层压强均呈线性增加。同时,相对密度与层间压强差之间存在良好的关系,表明棉纤维集合体存在显著的应变率敏感性。

关键词: 棉纤维集合体, 压缩力, 传递, 相对密度

Abstract:

In order to analyze compressive force transmission properties of the cotton fiber assembly, the comperssion test of cotton fiber assembly was carried out in the universal test of machine, pressure was acquired in the pressure sensing system form the upper, middle and lower cotton layer. This paper analyzed the relationship between pressure and strain, and relative density of cotton fiber saaembly.The results show that various cotton layers of pressure increases with increasing strain of cotton fiber assembly during compressing process. And various cotton layers of pressure become lower in turn from top to bottom, the interlayer pressure showed obvious differences. By subsequent analysis on the cotton fiber assembly density with mechanics, it was found that the relation between relative density and presuure could be expressed in best linearity. Namely, various cotton layers of pressure was in the linear increasing in the compression process with relative density increasing. The R-square of regression function between relative density and presuure difference of various cotton layers of pressure for testing sample was close to 1. It is showed that cotton fiber assembly has significant strain-rate sensitivity.

Key words: cotton fiber assembly, compressive force, transmission, relative density

[1] 陈萌 朱方龙 . 热辐射下织物内水分干燥实验及其动力学研究[J]. 纺织学报, 2018, 39(08): 52-57.
[2] 马妮妮 卢业虎 戴宏钦. 形状记忆材料在功能防护服中的应用[J]. 纺织学报, 2018, 39(04): 170-174.
[3] 卢琳珍 徐定华 徐映红. 应用三层热防护服热传递改进模型的皮肤烧伤度预测[J]. 纺织学报, 2018, 39(01): 111-118.
[4] 徐晓霞 危惠敏 付少举 张佩华. 单纤维柔软性的新型测试方法与优化[J]. 纺织学报, 2017, 38(11): 27-31.
[5] 吕丽华 黄耀丽 崔婧蕊. 蜂窝状三维整体机织复合材料的弯曲性能及其有限元模拟[J]. 纺织学报, 2017, 38(11): 56-60.
[6] 王红梅 郑振荣 张楠楠 张玉双 赵晓明. 多孔纤维织物热湿传递数值模拟的研究进展[J]. 纺织学报, 2016, 37(11): 159-165.
[7] 龚小舟 华婷 裴鹏英 李宇. 蜂窝结构三维纺织品的复合工艺开发[J]. 纺织学报, 2016, 37(09): 65-69.
[8] 吴佳佳 唐虹. 应用ABAQUS的织物热传递有限元分析[J]. 纺织学报, 2016, 37(09): 37-41.
[9] 张梦莹 苗勇 李俊. 防火服热蓄积的影响因素及其测评方法[J]. 纺织学报, 2016, 37(06): 171-176.
[10] 李佳怡 卢业虎 王发明 孙艳娇 王喆 朱敏. 应用男体出汗图谱的运动装设计与性能评价[J]. 纺织学报, 2016, 37(01): 116-122.
[11] 苏云 王云仪 李俊. 消防服衣下空气层热传递机制研究进展[J]. 纺织学报, 2016, 37(01): 167-172.
[12] 吴佳佳 唐虹 何姗姗. 织物含尘量对其热湿传递性能的影响[J]. 纺织学报, 2015, 36(03): 32-0.
[13] 张鹤誉 郑振荣 赵晓明 孙晓军. 玻璃纤维交织织物的热传递数值模拟[J]. 纺织学报, 2015, 36(03): 28-0.
[14] 周远 徐映红 徐定华. 结合粒子群算法的一类双层纺织材料厚度设计反问题[J]. 纺织学报, 2013, 34(6): 40-45.
[15] 张如全;周双喜;;陶荣;林建勇. 基于单片机织物动态热传递性能测试装置[J]. 纺织学报, 2011, 32(3): 122-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!