JOURNAL OF TEXTILE RESEARCH ›› 2017, Vol. 38 ›› Issue (05): 128-133.doi: 10.13475/j.fzxb.20160304807

Previous Articles     Next Articles

Numerical simulation of influence of groove type on flow field knside rotor

  

  • Received:2016-03-24 Revised:2017-02-06 Online:2017-05-15 Published:2017-05-16

Abstract:

The influence of groove type on high speed airflow during rotor spun yarn was investigated. Airflow speed and static pressure in four types of groove, such as G, T, U and S of the 36 mm diameter rotor, were studied by Fluent software. The results show that under the same conditions, speeds in four groove size are G>T>U>S within the range from 0° to 360°.  in groove. At 0° and 360° position, the static pressures are G>S>U>T. While for the rest of the angle position, the static pressures are S>U> T>G. Taking T groove as example, static pressures within the transfer channed are between  -32886.15Pa and 18224.56 Pa, static pressures within the rotor are between  -13719.63 Pa and -7330.80 Pa . The airstream accelerated from the transfer channel inlet to the outlet with the decrease of the pipe, and reached the largest value to 261.81m/s at the outlet.

Key words: rotor spinning, groove, numerical simulation, airflow field, speed, pressure

[1]张百祥,周慈念.转杯纺纱[M].北京:纺织工业出版社, 1993:61-65. ZHANG Baixiang, ZHOU Cinian. Rotor Spinning [M]. Beijing:Textile Industry Press,1993:61-65. [2]叶鸿玑,徐潼.转杯纺纱[M].济南:济南出版社, 1989:8-13. Ye Hong Ji, Xu Tong rotor spinning [M] Jinan: Jinan Press, 1989: 8-13. [3]曾泳春,郁崇文. 喷气纺喷嘴中气流流动的数值计算[J]. 东华大学学报(自然科学版),2002,05:11-16. Zeng Yong Chun, Yu Chongwen value of airflow jet spinning nozzle computing [J] of Donghua University (Natural Science), 2002,05: 11-16. [4]邹专勇,俞建勇,薛文良,程隆棣. 喷气涡流纺喷嘴内部 三维流场的数值研究[J]. 纺织学报,2008,02:86-89. Zou Yong specifically, Yujian Yong, Xue Wenliang, Cheng Longdi Numerical study of jet vortex spinning nozzle inside the three-dimensional flow field [J] Textile Sinica, 2008,02: 86-89. [5]梁海顺,杨昆,王贯超,高超,陈赞. 基于NUMECA技术 的喷气织机主喷嘴内部流场数值模拟[J]. 纺织器 材,2008,03:12-16. Lianghai Shun, Yang Jun, Wang Guan super, superb, Chan Chan NUMECA technology Main Nozzle internal flow field numerical simulation based on [J] textile equipment, 2008,03: 12-16. [6]林惠婷,汪军,曾泳春. 输棉通道几何参数对转杯纺气流 场影响的数值研究[J]. 纺织学报,2015,02:98-104. Lin Huiting, Wang Jun, who lost Yong Chun Numerical Study cotton spinning channel geometry on the flow field [J] Textile Sinica, 2015,02: 98-104. [7]王福军.计算流体动力学分析[M].北京:清华大学出版 社,2004:7-9. WANG Fujun. Computational fluid dynamics analysis [M]. Beijing:Tsinghua University Press,2004:7-9. [8]朱红均,林远华,谢龙汉.FLUENT流体分析及仿真实 用教程[M].北京:人民邮电出版社,2010:237-238. ZHU Hongjun, LIN Yuanhua, XIE Longhan. FLUENT fluid analysis and simulation practical tutorial [M]. Beijing: The People’s Posts and Telecommunications Press, 2010: 237-238. [9]张百祥,秦洪奇,陈丽珍.气流纺回转纱条张力的测试 与分析[J].东华大学学报(自然科学版),1981,1:008. Zhang Baixiang, Qin Hongqi, Chen Lizhen. Rotor spinning yarn tension test and analysis [J]. Journal of Donghua University (Natural Science), 1981, 1: 008. [10]汪军,黄秀宝.转杯纺捻度传递长度的解析研究[J]. 中国纺织大学学报,2000,01:64-69. WANG Jun, HUANG Xiubao. Analytical studies spinning twist length transfer[J]. China Textile University, 2000, 01: 64-69. [11]黄秀宝,梁金茹.捻度传递长度缠绕纤维与成纱质量 [J].纺织学报,1983,11:5-11+2. HUANG Xiubao, LIANG Jinru. Twist transfer length wound fiber and yarn quality[J]. Journal of Textile Reswarch, 1983, 11: 5-11+2.

[1] . Comprehensive performance of auxiliary nozzle of air-jet loom based on Fluent [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 124-129.
[2] . Analysis on blending effect of colored fiber in digital rotor spun yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 32-38.
[3] . Radial liner stretching jet spinning method using inertial centrifugal force [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 19-23.
[4] . Prediction of color blending effect of digital rotor yarn based on Kubelka-Munk double constant theory [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 36-41.
[5] . Variable diameter braiding with constant cover factor [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 54-62.
[6] . Test and study of pressure comfort threshold of female's garment [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 132-136.
[7] . Simulation on fiber motion in airflow field of transfer channel [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 55-61.
[8] . Stearns-Noechel color matching model of digital rotor spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 27-32.
[9] . Brain cognitive characterization of contact pressure comfort of fabrics based on functional magnetic resonance imaging [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 146-152.
[10] . Modeling and numerical simulating for for residual ammonia volatilization from yarn bobbin [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 149-154.
[11] . Out-of–plane deformation of tight woven fabric under high air pressure [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 49-55.
[12] . Preparation of reactive dye/polymer composite copolymer microspheres [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 80-84.
[13] . Influence of clothing pressure on female lower limb muscle fatigue during running sports [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 118-123.
[14] . Application status of thermoregulatory mode in clothing comfort evaluation with thermal manikin [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 164-172.
[15] . Modeling and influence about speed of released-yarn in braiding spindles on yarn tension [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(06): 111-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!