Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (05): 144-149.doi: 10.13475/j.fzxb.20180503306

• Machinery & Accessories • Previous Articles     Next Articles

Optimization of washing process and roller structure on drum washing machine

JI Minjie1, HUANG Bang1, YUE Xiaoli1, ZHONG Yi2, CHEN Huimin1()   

  1. 1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
    2. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2018-05-03 Revised:2019-01-03 Online:2019-05-15 Published:2019-05-21
  • Contact: CHEN Huimin E-mail:ch_huimin@dhu.edu.cn

Abstract:

In order to study the influence of washing progress and the roller structure on washing quality when fabrics are rinsed on drum washing machine, three items describing the remains and distribution of dye solution on fabrics were defined firstly. A finite element model of washing region was built by Fluent, and the influences of different roller structures were analyzed. Considering remaining ratio of dyeing liquid, uniformity of dyeing liquid and washing area ratio comprehensively, evaluation function of washing quality was proposed. Using central composite design method, series of design points were obtained. Response curves and sensitivity values were achieved. It is shown that the influence of washing speed is the most significant reaching 68%. Finally, in order to improve the washing quality, washing process and roller structure were optimized. The result shows that the washing quality of evaluation function is increased by 16.1%.

Key words: washing quality, drum washing machine, washing process, roller structure, optimization

CLC Number: 

  • TS190.3

Fig.1

Different roll groove structures. (a)Round hole;(b)Square hole; (c)Slotted hole;(d)Hexagonal hole"

Fig.2

Unit model of washing region"

Tab.1

Influences of fabric element size on remaining ratio of dyeing liquid"

网格尺寸/
mm
节点数 网格数 染液
残余率
偏差/
%
0.6 22 708 436 436 0.381
0.5 24 768 524 507 0.371 2.62
0.4 28 899 606 883 0.357 3.77
0.3 36 768 749 047 0.349 2.24
0.2 49 769 820 116 0.342 2.01

Fig.3

Distribution of fabric dye solution ratio. (a)Round hole;(b)Square hole; (c)Slotted hole;(d)Hexagonal hole"

Tab.2

Washing quality on different roll grooves"

辊网孔型 染液残余率 染液均匀度 洗涤面积比
圆形孔 0.35 0.45 0.68
正方形孔 0.31 0.35 0.67
槽形孔 0.17 0.32 0.82
正六边形孔 0.30 0.39 0.69

Fig.4

Optimization procedure of processing parameters and roll groove structure"

Fig.5

Relationships between design variables and integrated washing value. (a)Response of washing speed;(b)Response of washing speed;(c)Response of roller's radius size"

Tab.3

Sensitivity values of design variables"

变量 灵敏度/%
染液残
余率
均匀度 洗涤
面积比
水洗质量
综合评价值
水洗速度 -73 -57 75 68
水洗时间 -56 -69 55 46
辊网槽形孔半径 12 -14 -11 -15
[1] 马杰. 针织物水洗加工革命[C]//“科德杯”第七届全国染整节能减排新技术研讨会. 北京: 中国纺织工程学会, 2014: 123-125.
MA Jie. Revolution on washing processing of knitted fabric[C]// New technical seminar of the seventh Coude Cup on dyeing and finishing energy-saving and emission-reduction. Beijing: China Textile Engineering Society, 2014: 123-125.
[2] 张彪. 高温高压下二氧化碳在饱和油多孔介质中的扩散系数研究[D]. 长沙: 湖南大学, 2016: 16-17.
ZHANG Biao. Diffusion coefficients of carbon dioxide in oil-saturated porous media at high pressure and temperature[D]. Changsha:Hunan University, 2016: 16-17.
[3] 陈立秋. 印染厂节能减排实用工艺装备技术:七:高效水洗装备技术[J]. 印染, 2011,37(18):44-46.
CHEN Liqiu. Working technological equipment on energy-saving and emission-reduction of dyeing factories: VII: high efficiency washing equipment techno-logy[J]. China Dyeing and Finishing, 2011,37(18):44-46.
[4] 松井宏仁. 关于织物的水洗[J]. 张彩云, 译. 针织工业, 1980(6):57-70.
MATSUI Hirohito. Fabric washing[J]. ZHANG Caiyun, Translating. Knitting Industries, 1980(6):57-70.
[5] 陈真光. 大和振荡水洗机浅析[J]. 丝绸, 1983(12):47-50.
CHEN Zhenguang. Analysis of Dahe vibrating washing machine[J].Journal of Silk, 1983(12):47-50.
[6] 全永康. 西德Kusters的多孔圆筒水洗机[J]. 印染, 1981(1):61.
QUAN Yongkang. Multi-hole drum washing machine of West German Kusters[J].China Dyeing & Finishing, 1981(1):61.
[7] 武筱婷. 高乐SINTENSA CYCLONE TANDEM高效水洗机[J]. 纺织机械, 2017(4):60.
WU Xiaoting. Goller sintensa cyclone tandem efficient washing machine[J].Textile Machinery, 2017(4):60.
[8] 刘江坚. 2016 中国国际纺织机械展览会暨ITMA亚洲展览会针织印染前处理机械述评[J]. 针织工业, 2016(12):27-31.
LIU Jiangjian. 2016 China international textile machinery exhibition and review of pre-processing machinery for knitting and dyeing in Asia Exhibition[J]. Knitting Industries, 2016(12):27-31.
[9] 徐维敬. 2018中国国际纺织机械展览会暨ITMA亚洲展览会针织物印染前处理机械述评[J]. 针织工业, 2018(11):26-32.
XU Weijing. Review of knitted fabric pretreatment equipment on China international textile machinery exhibition-2018 ITMA Asia[J].Knitting Industries, 2018(11):26-32.
[10] XIAO Xueliang, HU Jinlian, HUA Tao, et al. Through-thickness air permeability of woven fabric under low pressure compression[J]. Textile Research Journal, 2015,85(16):1732-1742.
[11] 秦国华, 吴志斌, 叶海潮, 等. 基于层次分析法与定位确定性的工件定位方案规划算法[J]. 机械工程学报, 2016,52(1):193-203.
QIN Guohua, WU Zhibin, YE Haichao, et al. Design algorithm of workpiece locating scheme based on analytical hierarchy process and locating determin-ation[J]. Journal of Mechanical Engineering, 2016,52(1):193-203.
[12] 张志红, 何桢, 郭伟. 在响应曲面方法中三类中心复合设计的比较研究[J]. 沈阳航空工业学院学报, 2007,24(1):87-91.
ZHANG Zhihong, HE Zhen, GUO Wei. A comparative study of three central composite designs in response surface methodology[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2007,24(1):87-91.
[13] 宋昌浩, 纪国宜. 遗传算法优化稀疏分解的齿轮箱故障诊断研究[J]. 噪声与振动控制, 2017,37(5):175-179.
SONG Changhao, JI Guoyi. Research on fault diagnosis of gearboxes based on genetic algorithm optimized sparse decomposition[J]. Noise and Vibration Control, 2017,37(5):175-179.
[1] YING Shuangshuang, QIU Kebin, GUO Yufei, ZHOU Jiu, ZHOU Hua. Error optimization for measuring color chart data in textile color management [J]. Journal of Textile Research, 2020, 41(08): 74-80.
[2] ZHANG Juan, ZHENG Huanda, QIAO Yan, GAO Shihui, ZHENG Laijiu. Scouring and bleaching process for flax roves using supercritical CO2 [J]. Journal of Textile Research, 2020, 41(07): 93-100.
[3] ZHENG Xiaohu, BAO Jinsong, MA Qingwen, ZHOU Heng, ZHANG Liangshan. Spinning workshop collaborative scheduling method based on simulated annealing genetic algorithm [J]. Journal of Textile Research, 2020, 41(06): 36-41.
[4] MO Shuai, FENG Zhanyong, TANG Wenjie, DANG Heyu, ZOU Zhenxing. Performance optimization of elastic spindle pipe based on neural network and genetic algorithm [J]. Journal of Textile Research, 2020, 41(04): 161-166.
[5] WANG Xiaohui, LIU Yuegang, MENG Zhuo, SUN Yize. Optimization of process parameters for 3D additive screen printing based on genetic algorithm and neural network [J]. Journal of Textile Research, 2019, 40(11): 168-174.
[6] HU Beibei, DU Feifei, LI Xiaohui. Hole structure optimization and evaluation of thermal barrier for firefighter protective clothing [J]. Journal of Textile Research, 2019, 40(11): 140-144.
[7] MENG Shuo, PAN Ruru, GAO Weidong, WANG Jing'an, ZHOU Lijun. Research on weaving scheduling using main objective evolutionary genetic algorithm [J]. Journal of Textile Research, 2019, 40(08): 169-174.
[8] LI Zhiqiang, NI Li, ZHAO Zexiang, ZHANG Hong, LIANG Ying. Structure optimization for work roll of carding machine [J]. Journal of Textile Research, 2019, 40(08): 146-150.
[9] ZHOU Xian, WANG Ying, CHEN Jianneng, WANG Rui, TAO Dehua. Parameter optimization and experiments for winding mechanism of silk reeling machine [J]. Journal of Textile Research, 2019, 40(06): 97-105.
[10] SHAO Jingfeng, MA Chuangtao, WANG Ruichao, YUAN Yulou, WANG Xiyao, NIU Yifan. Polyester drawn textured yarn production process optimization based on carbon emission accounting [J]. Journal of Textile Research, 2019, 40(02): 166-172.
[11] . Influence of full-color weave on color mixing law of compound fabric structure with triple-weft [J]. Journal of Textile Research, 2018, 39(10): 44-49.
[12] . In fluences of raw materials and fabric parameters on performance of anti-arc fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 41-45.
[13] . Simulation of one-piece flow garment assembly line based on Flexsim software [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 155-161.
[14] . Evaluation and optimization of compressed air leakage in air-jet loom [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 130-136.
[15] . Route planning for concentric spinneret inspection based on improved ant colony algorithm [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(11): 124-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!