Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (06): 1-7.doi: 10.13475/j.fzxb.20180507007

• Fiber Materials •     Next Articles

Synthesis and characterization of bio-based polyamide 56 oligomer modified polyester

ZHANG Tengfei1, SHI Ludan2, HU Hongmei1, WANG Yu1, WANG Xueli3(), YU Jianyong3   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
    3. Innovation Center For Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2018-05-29 Revised:2019-03-14 Online:2019-06-15 Published:2019-06-25
  • Contact: WANG Xueli E-mail:wxl@dhu.edu.cn

Abstract:

In view of the poor hydrophilicity of polyester (PET), a novel polyamide ester copolymer was prepared by copolymerization modification of PET with bio-based polyamide 56 oligomer (LPA56). Structure and properties of the novel polyamide esters were characterized and analyzed by nuclear magnetic resonance spectrometer, Fourier transform infrared spectroscopy, X-ray diffractometer and optical contact angle measuring instrument. The results show that the novel polyamide esters have functional peaks of both esters and amides, and the reaction rate of LPA56 is over 80%. The copolymers and polyesters have the same crystal form. However, the crystallinity decreases with the increase of the amount of LPA56 added. The glass transition temperature and melting point of the copolymer gradually decrease with the increase of the amount of LPA56 added, but the thermal stability of the copolymer is less affected. When 5% LPA56 is added, the static contact angle is greatly reduced from 91.5° to 70.3°, and the fiber moisture regain is 265% of the pre-modified PET fiber, and gradually increases with the amount of LPA56 added.

Key words: polyamide 56, polyamide ester, modified polyester, crystallinity, hydrophilic property

CLC Number: 

  • TQ342.21

Fig.1

Polyamide ester reaction"

Tab.1

Feed ratio of raw material"

样品编号 PTA用量/
mol
EG用量/
mol
聚酰胺56低聚物
占比/%
0# 12 16.8 0
1# 12 16.8 5
2# 12 16.8 10
3# 12 16.8 15

Fig.2

1H-NMR spectra of polyamide ester"

Fig.3

Structure of polyamide ester labeled with hydrogen elements at different locations"

Tab.2

Reaction rate of LPA56%"

样品编号 理论μLPA56 实际μLPA56 反应率
1# 0.040 0.032 80.0
2# 0.079 0.071 89.9
3# 0.114 0.108 91.2

Fig.4

13C-NMR spectrum of polyamide ester"

Fig.5

Structural formula of polyamide ester"

Fig.6

FT-IR spectra of polyamide ester"

Fig.7

XARD spectra of polyamide ester"

Tab.3

XARD parameter table of polyamide ester"

样品编号 晶面间距/nm 结晶度/%
(010) (11ˉ0) (100)
0# 5.05 3.86 3.44 33.69
1# 5.14 3.90 3.43 27.74
2# 4.96 3.85 3.38 26.80
3# 4.92 3.85 3.39 25.26

Fig.8

DSC spectra of polyamide ester"

Fig.9

TG and DTG curves of polyamide ester"

Fig.10

Static contact angle of polyamide ester"

Fig.11

Hydrophilic principle of polyamide ester"

[1] BOUMA K, REGRLINK M, GAYMANS R J. Crystallization of poly(ethylene terephthalate) modified with codiols[J]. Journal of Applied Polymer Scince, 2001,80(14):2676-2682.
[2] 郭林锋, 骆唐文, 王依民. PP/PET共混体系及其合金纤维的研究[J]. 合成纤维, 2006,35(12):11-15.
GUO Linfeng, LUO Tangwen, WANG Yimin. Study on PP/PET blend system and its alloy fibers[J]. Synthetic Fiber in China, 2006,35(12):11-15.
[3] 孔繁荣, 陈莉娜, 许瑞超. 亲水改性聚酯纤维的结构与可纺性研究[J]. 棉纺织技术, 2016,44(5):1-4.
KONG Fanrong, CHEN Lina, XU Ruichao. Study on structure and spinnability of hydrophilic modified polyester fiber[J]. Cotton Textile Technology, 2016,44(5):1-4.
[4] 徐卫海, 娄雪芹, 王学利, 等. 生物基戊二胺己二酸盐改性聚酯的合成及结构分析[J]. 东华大学学报(自然科学版), 2016,42(5):663-668.
XU Weihai, LOU Xueqin, WANG Xueli, et al. Synjournal and structure analysis of modified polyester with bio-based diaminopentane hexanedioic salt[J]. Journal of Donghua University(Natural Science Edition), 2016,42(5):663-668.
[5] 江渊, 吴立衡. 红外光谱在聚对苯二甲酸乙二醇酯纤维结构研究中的应用[J]. 高分子通报, 2001(2):62-68.
JIANG Yuan, WU Liheng. Application of infrared spectroscopy in the study of the structure of polyethylene terephthalate fiber[J]. Polymer Bulletin, 2001(2):62-68.
[6] CHEN Bin, GU Lixia. Isothermal crystallization and melt ing behavior of 2-methyl-1,3-propanediol substituted sulstitude fon ated poly(ethylene terephthalate) copolyesters[J]. Journal of Applied Polymer Science, 2010,117(4):2454-2463.
[7] 任军, 孙军, 邱殿銮, 等. 聚对苯二甲酸乙二醇酯/聚丙二醇共聚醚酯热性能研究[J]. 合成技术及应用, 2014 (4):13-16.
REN Jun, SUN Jun, QIU Dianluan, et al. Study on thermal properties of poly (ethylene terephthalate)/poly (propylene glycol) polyether ester[J]. Synthetic Technology and Its Application, 2014(4):13-16.
[8] 杨万泰. 聚合物材料表征与测试[M]. 北京: 中国轻工业出版社, 2008: 15-20.
YANG Wantai. Characterization and Testing of Polymer Materials[M]. Beijing: China Light Industry Press, 2008: 15-20.
[9] 黄芳. 基于PET的聚酰胺酯的制备[D]. 上海:东华大学, 2014: 24-25.
HUANG Fang. Preparation of PET-based polyamide ester[D]. Shanghai: Donghua University, 2014: 24-25.
[10] 张继超, 周蓉, 赵辉, 等. 新戊二醇改性共聚酯的制备及其性能[J]. 东华大学学报(自然科学版), 2016,42(2):185-190.
ZHANG Jichao, ZHOU Rong, ZHAO Hui, et al. Preparation and properties of neopentyl glycol modified copolyesters[J]. Journal of Donghua University(Natural Science Edition), 2016,42(2):185-190.
[11] 何平笙. 新编高聚物的结构与性能[M]. 北京: 科学出版社, 2009: 1-30.
HE Pingsheng. New High Polymer Structure and Perform-ance[M]. Beijing: Science Press, 2009: 1-30.
[12] 缪国华, 秦伟明, 程贞娟. 新戊二醇(NPG)对PET的改性研究[J]. 浙江理工大学学报, 2005,22(4):337-340.
MIAO Guohua, QIN Weiming, CHENG Zhenjuan. Study on modification of PET by NPG[J]. Journal of Zhejiang Sci-Tech University, 2005,22(4):337-340.
[1] GUAN Fucheng, GUO Jing, LÜ Lihua, TAN Qian, SONG Jingxing, ZHANG Xin. Hydrogen bonding mechanism and properties of polyvinyl alcohol / krill protein fibers [J]. Journal of Textile Research, 2020, 41(10): 7-13.
[2] DONG Kuiyong, YANG Tingting, WANG Xueli, HE Yong, YU Jianyong. Research and development progress of bio-based polyester and polyamide fibers [J]. Journal of Textile Research, 2020, 41(01): 174-183.
[3] YANG Fan, LIU Junhua, BIAN Angting, WANG Yanping, QIAN Qiyuan, NI Jianhua, XIA Yumin, HE Yong, WANG Yimin. Influence of heat treatment on structure and properties of thermotropic liquid crystalline polyarylate fiber [J]. Journal of Textile Research, 2019, 40(11): 9-12.
[4] . Softness treatment of ramie fibers by N-methyl-2-pyrrolidone [J]. Journal of Textile Research, 2019, 40(04): 72-76.
[5] . Preparation and performance of easy cationic dye-modified polyester by solid-phase polycondensation [J]. Journal of Textile Research, 2019, 40(04): 21-25.
[6] . Measurement of crystallinity and crystal orientation of polyester industrial yarns by 2-D X-ray diffraction [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 19-25.
[7] . Crystallization behavior of bio-based polyamide 56 fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 7-13.
[8] . Preparation of oriented nanowires by melt differential electrospinning [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 8-12.
[9] . Influence of ultrasonic treatment on cellulase hydrolysis of bamboo powder [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 83-87.
[10] . Preparation and characterization of rice straw cellulose nanowhiskers [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 1-7.
[11] . Thermal and dyeing properties of novel cationic-dyeable polyester fabrics under atmospheric pressure [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(12): 71-75.
[12] . Structure and property of methanol protein modified viscose fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(09): 12-15.
[13] . Structure and performance of corn bracts and its fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(07): 7-12.
[14] . Preparation and characterization of microcrystalline cellulose from Salix psammophila bark [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(06): 7-12.
[15] . Structure and properties of colored tussah silk fibers [J]. Journal of Textile Research, 2015, 36(04): 16-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!