Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (11): 81-87.doi: 10.13475/j.fzxb.20180607507

• Textile Engineering • Previous Articles     Next Articles

Internal defect detection method for thin test pieces of woven laminated composites based on ultrasonic phased array

XIAO Zhitao1, GUO Yongmin2, GENG Lei1(), WU Jun1, ZHANG Fang1, WANG Wen1, LIU Yanbei1   

  1. 1. College of Electronics and Information Engineering, Tiangong University, Tianjin 300387, China
    2. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
  • Received:2018-06-25 Revised:2019-08-04 Online:2019-11-15 Published:2019-11-26
  • Contact: GENG Lei E-mail:genglei@tjpu.edu.cn

Abstract:

As defects may exist in the test pieces of woven laminated composites, the method of ultrasonic array test is used to carry out 100% ultrasonic scanning of woven laminated composite and the defect areas obtained by ultrasonic positioning were analyzed. The corresponding relation of the ultrasonic echo A flicking waveform, B and C scan images and the internal defects distribution of woven laminated composites were researched. The results of ultrasonic testing for the composite inspiring 4,8,16 elements at the same time and the scanning ultrasonic testing results for the thin braided composites in the horizontal and vertical direction under the optimal condition were compared. A simple quantitative analysis of C scan image of the defects was conducted. Experimental results show that there is a one-to-one corresponding relationship on the defect display of woven laminated composites between the ultrasonic A scan echo, B and C scan images. The ultrasonic phased array detection method can be used to evaluate the nondestructive testing and defects of woven laminated composites.

Key words: woven laminated composites, defect detection, ultrasonic phased array detection, ultrasonic echo, non-destructive testing

CLC Number: 

  • TS101.8

Fig.1

Experimental figures. (a) Encoder;(b) Probe and matching straight wedge; (c) Experimental platform; (d) Horizontal scanning; (e) Vertical scanning; (f) Thin specimen"

Tab.1

Parameter setting of ultrasonic phased array"

名称 参数 名称 参数
材料声速 2 330.0 m/s 声波类型 纵波
法则配置 0°线性 扫查方式 扫查器扫查
聚焦深度 2 mm 成像显示 A-B、A-C
第一晶片 1个 扫查速度 30.0 mm/s
最后晶片 64个 编码器分辨率 13步距/mm
晶片步距 1

Fig.2

0°beam sound field diagram. (a) 4 elements; (b) 8 elements; (c) 16 elements"

Fig.3

Scanning figures by firing 4 elements at the same time. (a) A-scan; (b) B-scan; (c) C-scan"

Fig.4

Scanning figures by firing 8 elements at the same time. (a) A-scan; (b) B-scan; (c) C-scan"

Fig.5

Scanning figures by firing 16 elements at the same time. (a) A-scan; (b) B-scan; (c) C-scan"

Fig.6

Scanning figures at horizontal and vertical direction. (a) Tomoview (horizontal scanning); (b) Tomoview (vertical scanning); (c) Horizontal scanning of same position (A-C-S); (d) Vertical scanning of same position (A-C-S)"

Fig.7

C-scan(a)and B-scan(b)diagram by scanning of composite material"

Fig.8

Corresponding waveform diagram of defects 1(a), 2(b) and 3(c)"

Fig.9

Figure of defect 3"

[1] 孟松鹤, 田晓晓, 杜善义, 等. 三维编织碳/环氧复合材料力学性能测试及破坏机制[J]. 复合材料学报, 2012(2):115-120.
MENG Songhe, TIAN Xiaoxiao, DU Shanyi, et al. Mechanical properties testing and failure mechanism of 3D woven carbon/epoxy composite materials[J]. Acta Materiae Composite Sinica, 2012(2):115-120.
[2] SMITH R A. Advanced NDT of composites in the United Kingdom[J]. Materials Evaluation, 2007,65(7):697-710.
[3] KALMS Michael, FOCKE Oliver, KOPYLOW Christoph V. Applications of laser ultrasound NDT methods on composite structures in aerospace industry[C]// CHENG Genquan, ANANA Asundi. Ninth International Symposium on Laser Metrology. Bellingham: Proceedings of SPIE, 2008. DOI: 10.1117/12.814512.
[4] TOMOSZ Chady, PRZMYSLAW Lopato. Electromagnetic nondestructive testing of composite materials[J]. Nondestructive Testing, 2009,31(10):758-761.
[5] 刘松平. 复合材料无损检测与缺陷评估技术:庆祝中国机械工程学会无损检测分会成立三十周年[J]. 无损检测, 2008,30(10):673-678.
LIU Songping. Nondestructive testing and evaluation techniques for composites: celebration of 30 year anniversary of NDT[J]. Nondestructive Testing, 2008,30(10):673-678.
[6] 李怀富, 李业书, 吕贵平, 等. 超声相控阵技术在复合材料检测上的应用[J]. 玻璃钢/复合材料, 2010(2):86-88.
LI Huaifu, LI Yeshu, LÜ Guiping, et al. Application of ultrasonic phased array technology in composite material detection[J]. FRP/Composite Material, 2010(2):86-88.
[7] 白小宝, 孙建罡, 周建平, 等. 超声相控阵技术检测蜂窝复合材料案例[J]. 无损检测, 2013,35(12):46-48.
BAI Xiaobao, SUN Jiangang, ZHOU Jianping, et al. Ultrasonic phased array technology to detect cases of honeycomb composite materials[J]. Nondestructive Testing, 2013,35(12):46-48.
[8] WAN Z K, WANG Z G, GUO J M. Analysis of non-destructive testing of three-dimensional braided composite using scanning SQUID NDT[J]. Insight, 2014,56(5):246-251.
[9] 万振凯, 李静东. 三维编织复合材料压缩损伤声发射特性分析[J]. 纺织学报, 2006,27(2):20-24.
WAN Zhenkai, LI Jingdong. Feature of acoustic emission and failure analysis for three-dimensional braided composite material under compressive load[J]. Journal of Textile Research, 2006,27(2):20-24.
[10] 王国军, 孙颖, 李嘉禄. 超声评价碳环氧三维编织复合材料的实验分析[J]. 玻璃钢/复合材料, 2009,6(9):39-43.
WANG Guojun, SUN Ying, LI Jialu. Ultrasonic evaluation of carbon epoxy three-dimensional woven composite material experimental analysis[J]. FRP/Composite Material, 2009,6(9):39-43.
[11] 谢岳. 超声检测技术在航空复合材料构件中的应用[C]// 中国航空航天工具协会,中国航空学会维修工程专业分会. 2017年首届航空保障设备发展论坛论文集. 北京:航空工业出版社, 2017: 203-207.
XIE Yue. The application of ultrasonic testing technology in aviation composite material component[C]//China Aero-Space Tooling Association, China Aviation Society Maintenance Engineering Branch. Proceeding of 2017 First Aviation Security Equipment Development BBS. Beijing: Aviation Industry Press, 2017: 203-207.
[12] 万振凯, 贾敏瑞. 基于磁通图像的平板三维编织复合材料试件内部缺陷检测[J]. 纺织学报, 2015,36(8):49-55.
WAN Zhenkai, JIA Minrui. Flux image-based internal defect detection for flat test pieces of three-dimensional braided composites[J]. Journal of Textile Reasearch, 2015,36(8):49-55.
[13] 王占刚. 基于SQUID的三维编织复合材料的无损检测研究[D]. 天津: 天津工业大学, 2015: 1-10.
WANG Zhangang. Nondestructive testing of 3D braided composites based on SQUID[D]. Tianjin:Tianjin Polytechnic University, 2015: 1-10.
[14] TROJAHN W, JANSER K, ROESCH O. Experience in using ultrasonic testing of bearing steel for demanding applications[J]. Journal of ASTM International, 2006,3(9):1-7.
[15] 张聪颖. 超声相控阵检测系统图像处理和成像技术的研究[D]. 天津:天津大学, 2010: 19-24.
ZHANG Congying. Study on image processing and imaging technology of ultrasonic phased array detection system[D]. Tianjin:Tianjin University, 2010: 19-24.
[16] 何军, 陈刚. 超声图像的表面轮廓提取及三维图像重建过程的探讨[J]. 兰州理工大学学报, 2004,30(4):53-56.
HE Jun, CHEN Gang. Discussion on surface contour extraction and 3D image reconstruction of ultrasonic images[J]. Journal of Lanzhou University of Technology, 2004,30(4):53-56.
[1] ZHU Lei, REN Mengfan, PAN Yang, LI Botao. Fabric defect detection based on similarity location and superpixel segmentation [J]. Journal of Textile Research, 2020, 41(10): 58-66.
[2] ZHOU Wenming, ZHOU Jian, PAN Ruru. Yarn-dyed fabric defect detection based on context visual saliency [J]. Journal of Textile Research, 2020, 41(08): 39-44.
[3] YANG Enjun, LIAO Yihui, LIU Andong, YU Li. Detection for fabric defects based on low-rank decomposition [J]. Journal of Textile Research, 2020, 41(05): 72-78.
[4] LU Hao, CHEN Yuan. Surface defect detection method of carbon fiber prepreg based on machine vision [J]. Journal of Textile Research, 2020, 41(04): 51-57.
[5] JING Junfeng, ZHANG Junyang, ZHANG Huanhuan, SU Zebin. Defect detection on surface of draw texturing yarn packages in gradient space [J]. Journal of Textile Research, 2020, 41(02): 44-51.
[6] ZHANG Huanhuan, MA Jinxiu, JING Junfeng, LI Pengfei. Fabric defect detection method based on improved fast weighted median filtering and K-means [J]. Journal of Textile Research, 2019, 40(12): 50-56.
[7] . Defect detection algorithm for multiple texture hierarchical fusion fabric [J]. Journal of Textile Research, 2019, 40(06): 117-124.
[8] . Fabric defect detection based on improved local adaptive contrast method#br# [J]. Journal of Textile Research, 2019, 40(02): 38-44.
[9] . Application of algorithm with improved frequency-tuned salient region [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 154-160.
[10] . Detection of fabric defects based on Gabor filters and Isomap [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 162-167.
[11] . Fabric defect detection algorithm based on histogram of orientation gradient and low-rank decomposition [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 149-154.
[12] . Yarn-dyed fabric defect detection based on deep-convolutional neural network [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(02): 68-74.
[13] . Defect detection for mini-jacquard fabric based on visual saliency [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(12): 38-42.
[14] . Warp knit fabric defect detection method based on optimal Gabor filters [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 48-54.
[15] . Fast fabric defect detection algorithm based on integral image [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 141-147.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!