Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (05): 119-123.doi: 10.13475/j.fzxb.20180703105

• Apparel Engineering • Previous Articles     Next Articles

Thermal-moisture comfort of multilayered fabric systemsused as firefighting clothing

LIU Linyu1, CHEN Chengyi1, WANG Zhenyu1, ZHU Huan1, JIN Yanping1,2()   

  1. 1. Fashion College, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Clothing Engineering Research Center of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2018-07-12 Revised:2018-11-24 Online:2019-05-15 Published:2019-05-21
  • Contact: JIN Yanping E-mail:goldyp77@163.com

Abstract:

In order to study the comfort of the firefighters' protective clothing fabrics and investigate the factors affecting the comfort of fabric combinations,11 types of fabrics commonly used in firefighters' protective clothing were selected to simulate the layered composition of fire fighting clothing, including outer shell, moisture barrier, thermal barrier and comfort lining. And the multilayer fabrics were tested and analyzed in thermal resistance, moisture resistance and total heat loss. The results show that the basic properties of selected fabric combinations meets the requirement of GA 10-2014, but heat-moisture comfort of the fabrics does not meet the American standard. The thermal resistance, moisture resistance and total heat loss of the fabric are all in line with its weight. The thermal resistance and moisture resistance increases with the weight, while the total heat loss decreases with the weight. The thickness of the air layer between fabric combinations has a greater influence on the thermal resistance of the fabric combinations. Multiple regression mathematical model was built for the water-vapor transmition rate, clo and total heat loss. It can be applied to evaluate the thermal moisture comfort of multilayer fabrics.

Key words: firefighters' protective clothing, thermal resistance, moisture resistance, total heat loss, thermal-moisture comfort

CLC Number: 

  • TS195.1

Tab.1

Structural parameters of each layer fabrics"

面料
编号
原料成分 组织
结构
面密度/
(g· m-2)
厚度/
mm
A1 93%芳纶1313+5%芳纶1414+2%抗静电纤维 平纹 200 0.37
A2 100%芳纶1414 平纹 240 0.31
A3 100%芳纶1414 平纹 200 0.27
A4 100%芳纶1313 平纹 200 0.40
A5 外层:芳纶IIIA+芳纶1414+抗静电纤维
内层:芳纶1313+芳纶1414
双层织物 225 0.52
A6 93%芳纶1313+5%芳纶1414+2%抗静电纤维 斜纹 210 0.43
A7 60%芳纶1313+40%芳纶1414 联合
组织
240 0.55
A8 50%芳纶1313+50%耐高温纤维 斜纹 230 0.45
B1 80%芳纶1313+20%芳纶1414+PTFE膜 无纺
毡覆膜
90 0.46
B2 80%芳纶1313+20%芳纶1414+PTFE膜 无纺
毡覆膜
108 0.53
C 芳纶隔热毡+芳纶/阻燃粘胶底布 无纺毡与
平纹织物
缝合
190 1.01

Tab.2

Test results of basic properties of fabrics"

面料编号 阻燃性能 断裂强力/N 织物
组合
编号
织物
组合
织物组合
TPP值/
(kW·s·m-2)
织物
组合
厚度/
mm
织物组合
面密度/
(g· m-2)
经向 纬向
损毁
长度/
mm
续燃
时间/
s
损毁
长度/
mm
续燃
时间/
s
经向 纬向
A1 11.0 0 16.0 0 1 119.0 784.50 1# A1/B1/C 29.6 1.96 512.27
A2 5.0 0 5.0 0 1 870.2 1 786.6 2# A2/B2/C 32.2 1.82 534.27
A3 5.0 0 5.0 0 1 954.1 1 749.0 3# A3/B1/C 31.6 1.86 501.96
A4 46.3 0 44.7 0 1 395.2 838.3 4# A4/B2/C 30.3 1.87 521.78
A5 8.0 0 27.7 0 1 537.9 1 070.8 5# A5/B1/C 31.9 2.16 540.27
A6 55.3 0 50.7 0 1 330.5 1 127.4 6# A6/B2/C 29.0 1.92 526.00
A7 18.3 0 9.7 0 1 776.6 1 265.5 7# A7/B1/C 30.4 2.12 549.96
A8 2.3 0 7.7 0 1 352.4 1 173.3 8# A8/B2/C 29.7 1.95 564.31
GA 10—2014标准 ≤100 ≤2 ≤100 ≤2 ≥650 ≥650 ≥28

Tab.3

Thermal resistance of single layer fabrics"

面料编号 克罗值/clo 热阻/(m2·K·W-1)
A1 0.12 0.019
A2 0.13 0.020
A3 0.13 0.020
A4 0.11 0.017
A5 0.14 0.022
A6 0.12 0.019
A7 0.14 0.022
A8 0.10 0.016
B1 0.12 0.019
B2 0.14 0.022
C 0.21 0.033

Tab.4

Thermal resistance of multi-layer fabrics"

织物组合
编号
织物组合 克罗值/
clo
实际热阻/
(m2·K·W-1)
理论热阻/
(m2·K·W-1)
1# A1/B1/C 0.37 0.057 0.071
2# A2/B2/C 0.45 0.070 0.075
3# A3/B1/C 0.38 0.059 0.072
4# A4/B2/C 0.43 0.067 0.072
5# A5/B1/C 0.4 0.062 0.074
6# A6/B2/C 0.45 0.070 0.074
7# A7/B1/C 0.42 0.065 0.074
8# A8/B2/C 0.43 0.067 0.071

Tab.5

Moisture resistance of single layer fabrics"

面料编号 透湿率/(g· m-2·h-1) 湿阻/(m2·Pa·W-1)
A1 331.095 26.918
A2 280.919 31.726
A3 249.823 35.675
A4 372.085 23.953
A5 319.788 27.870
A6 331.802 26.861
A7 314.841 28.308
A8 315.194 28.276
B1 333.922 26.691
B2 240.989 36.983
C 344.876 25.843

Tab.6

Moisture resistance of multi-layer fabrics"

织物组合
编号
织物
组合
W/
(g·m-2·h-1)
湿阻/
(m2·Pa·W-1)
1# A1/B1/C 239.576 37.201
2# A2/B2/C 177.739 50.144
3# A3/B1/C 197.527 45.121
4# A4/B2/C 209.541 42.534
5# A5/B1/C 235.689 37.815
6# A6/B2/C 204.947 43.487
7# A7/B1/C 237.456 37.534
8# A8/B2/C 202.827 43.942

Tab.7

Total heat loss of multi-layer fabrics"

织物组合
编号
织物组合 总热损失/
(W·m-2)
1# A1/B1/C 190.805
2# A2/B2/C 157.459
3# A3/B1/C 174.435
4# A4/B2/C 171.316
5# A5/B1/C 184.449
6# A6/B2/C 167.094
7# A7/B1/C 182.149
8# A8/B2/C 169.015

Tab.8

Total heat loss of coefficients"

模型 非标准化系数 标准系数 显著性 共线性统计量
B 标准误差 t Sig. 容差 方差膨胀因子
(常量) 162.900 2.426 67.139 0.000
克罗值 -147.263 3.888 -0.414 -37.875 0.000 0.697 1.434
透湿率 0.342 0.005 0.710 65.020 0.000 0.697 1.434
[1] 苗勇, 李俊. 减少热蓄积的消防服开发及其性能评价[J]. 纺织学报, 2016,37(1):111-115.
MIAO Yong, LI Jun. Development and evaluation offirefighter's clothing capable of enhancing heatdissipation[J]. Journal of Textile Research, 2016,37(1):111-115.
[2] 漆政昆, 张和平, 黄冬梅, 等. 消防服用织物材料热湿舒适性综合评价[J]. 中国安全科学学报, 2012,22(4):132-138.
QI Zhengkun, ZHANG Heping, HUANG Dongmei, et al. Comprehensive evaluation of thermal and moisture comfortableness of fabric for firefighter protective clothing[J]. China Safety Science Journal, 2012,22(4):132-138.
[3] ROSSI R. Fire fighting and its influence on the body[J]. Ergonomics, 2003,46(10):1017-1033.
pmid: 12850937
[4] 李利君, 宋国文, 李睿, 等. 消防员防护服面料的热湿舒适性[J]. 纺织学报, 2017,38(3):122-125.
LI Lijun, SONG Guowen, LI Rui, et al. Heat moisture comfort of fire-fighter's protective clothing materials[J]. Journal of Textile Research, 2017,38(3):122-125.
[5] 宗艺晶, 李俊. 消防服热湿舒适性客观测评表征指标的比较[J]. 东华大学学报(自然科学版), 2013,39(6):748-753.
ZONG Yijing, LI Jun. Comparison of objective evaluation indices on thermal-moisture comfort of firefighting protective cloth-ing[J]. Journal of Donghua University (Natural Science Edition), 2013,39(6):748-753.
[6] 张欢. 阻燃织物热湿舒适性及热防护性能研究[D]. 上海: 东华大学, 2016: 5.
ZHANG Huan. The study of thermal comfort and thermal protective performance of flame retardant fabrics[D]. Shanghai: Donghua University, 2016: 5.
[7] 郑振荣, 顾振亚, 杨文芳, 等. 织物结构对安芙赛纺织品阻燃性能的影响[J]. 纺织学报, 2009,30(2):56-60.
ZHENG Zhenrong, GU Zhenya, YANG Wenfang, et al. Effect of fabric structures on flame retardant property of Anti-fcell fabrics[J]. Journal of Textile Research, 2009,30(2):56-60.
[8] 李红燕, 吴宣润, 张渭源, 等. 热防护服织物性能与综合防护能力的关系[J]. 纺织学报, 2008,29(9):59-62.
LI Hongyan, WU Xuanrun, ZHANG Weiyuan, et al. Relationships between thermal protective performance and properties of fabrics[J]. Journal of Textile Research, 2008,29(9):59-62.
[9] 李红燕, 张渭源. 消防服用织物的阻燃性能及其TPP值[J]. 纺织学报, 2008,29(5):84-88.
LI Hongyan, ZHANG Weiyuan. Flame-retardant performance and TPP value of fabrics for fire-fighting suits[J]. Journal of Textile Research, 2008,29(5):84-88.
[10] 常生, 李津. 空气层对针织物热传递性能的影响[J]. 针织工业, 2015(7):100-103.
CHANG Sheng, LI Jin. Effect of air layer on heat transfer performance of the knitted fabric[J].Knitting Industries, 2015(7):100-103.
[11] 赖军, 张梦莹, 张华, 等. 消防服衣下空气层的作用与测定方法研究进展[J]. 纺织学报, 2017,38(6):151-156.
LAI Jun, ZHANG Mengying, ZHANG Hua, et al. Research progress on air gap entrapped in firefighters' protective clothing and its measurement methods[J]. Journal of Textile Research, 2017,38(6):151-156.
[12] 张威, 刘智, 李龙. 基于多元回归分析的纬平织物热湿舒适性能[J]. 纺织学报, 2011,32(7):54-59.
ZHANG Wei, LIU Zhi, LI Long. Thermal-moisture comfort of weft knitted plain fabric based on multiple regression analysis[J]. Journal of Textile Research, 2011,32(7):54-59.
[13] 宗艺晶. 消防服多层织物系统热湿舒适性的评价方法研究[D]. 上海: 东华大学, 2011: 66-67.
ZONG Yijing. Evaluation of thermal-moisture comfort for the multilayered fabric systems using in firefighting cloth-ing[D]. Shanghai: Donghua University, 2011: 66-67.
[1] LEI Min, LI Yuling, MA Yanxue, CHENG Longdi, ZHOU Feng. Research progress of moisture evaporating performance of fabrics [J]. Journal of Textile Research, 2020, 41(07): 174-181.
[2] HU Ziting, ZHENG Xiaohui, FENG Mingming, WANG Yingjian, LIU Li, DING Songtao. Influence of air gap on thermal and moisture properties of permeable protective clothing [J]. Journal of Textile Research, 2019, 40(11): 145-150.
[3] . Research on open local thermal resistance measurement system [J]. Journal of Textile Research, 2018, 39(09): 127-133.
[4] . Heat-moisture comfort of fire-fighter’s protective clothing materials [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 122-125.
[5] . Gray clustering analysis on thermal-moisture comfort of phenolic fiber fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(12): 29-32.
[6] . ABAQUS based finite element analysis of heat transfer through woven fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(09): 37-41.
[7] . Thermal-moisture comfort of swarin cut pile fabrics [J]. Journal of Textile Research, 2015, 36(04): 55-59.
[8] . System design analyses and experimental study on sweating guarded hotplates  [J]. Journal of Textile Research, 2015, 36(03): 128-134.
[9] . Effect of structure pamarents on thermal-moisture comfort of cut pile fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(1): 46-0.
[10] . Experimental study of moisture diffusivity for fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(12): 55-0.
[11] REN Wangting;WANG Ying. Theoretical analysis of power compensation DSC curves [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(1): 11-18.
[12] . Termal-moisture comfort of blended knitted fabrics with milk casein fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(04): 41-44.
[13] YANG Qingbin;WANG Rui;LIU Yixin. Relationship between the blended ratio and comfort properties of soybean protein fiber/polyester knitted fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(6): 52-54.
[14] CHEN Yisong;XU Jun. Assessment of clothing fabric insulation by infrared imaging [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(12): 81-83.
[15] ZHANG Yun;WU Ziying;JI Erli;ZHOU Xiaohong;CHEN Jianyong. Measurement and comparison of the thermal transport of fabric and its garment [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(1): 86-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!