Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (09): 35-41.doi: 10.13475/j.fzxb.20180805207

• Fiber Materials • Previous Articles     Next Articles

Preparation of controllable ZnO nanoparticles on surface of nonwovens

ZHOU Ying1, WANG Chuang1, ZHU Jiaying1, HUANG Linxi1, YANG Lili1, YU Houyong1, YAO Juming1(), JIN Wanhui2   

  1. 1. Silk Institute, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Hubei Province Fiber Inspection Bureau, Wuhan, Hubei 430000, China
  • Received:2018-08-23 Revised:2019-05-31 Online:2019-09-15 Published:2019-09-23
  • Contact: YAO Juming E-mail:yaoj@zstu.edu.cn

Abstract:

In order to prepare ZnO composite photocatalytic material with good dispersibility, a one-step method was adopte to mix polypropylene spunbonded nonwoven fabric (PPEN) and zinc ammonium solution, influences ZnO nanoparticles with different morphologies and photocatalytic properties were loaded by direct precipitation. The influences of reaction temperature on the morphology, dispersibility, crystallization, thermal stability and photocatalytic properties of ZnO particles on the surface of the fibers were investigated by scanning electron microscopy, X-ray diffractometer (XRD), thermogravimetric analyzer and UV-visible diffuse reflectance spectroscopy. The results show that rod-shaped ZnO microparticles are uniformly coated on the surface of the nonwoven fabric after treatment at 75 ℃, and the PPFN/ZnO composites obtained at 75 ℃ have sharper peaks on the XRD chart than those obtained at 60 ℃ and 90 ℃, whose crystallinity is 88.0%. Furthermore, its maximum degradation temperature increases from 287.2 ℃ to 392.9 ℃, with an increase of 105.7 ℃, and the PPFN/ZnO composites obtained at 75 ℃ has a degradation ratio of 96.04% after photocatalytic degradation of methylene blue dye for 8 h.

Key words: ZnO, polypropylene spunbond nonwoven, morphological regulation, photocatalytic performance

CLC Number: 

  • TS176

Fig.1

SEM images of PPFN and PPFN/ZnO composites obtained at different treatment temperatures"

Tab.1

Length, diameter and aspect ratio of surface-loaded zinc oxide"

样品 ZnO形貌 平均长度/nm 平均直径/nm
PPFN (18.8±0.9)×1 000
PPFN60 不规则颗粒状 373
PPFN75 棒状,均一 1 320 175
PPFN90 棒状,不均一 1 650 278

Fig.2

Element analysis of PPFN and PPFN/ZnO composites"

Fig.3

Schematic diagram of formation mechanism of ZnO nanoparticles on surface of nonwoven fabric"

Fig.4

X-ray diffraction spectra of PPFN/ZnO composites"

Tab.2

Average crystallinity and grain size of ZnO in PPFN/ZnO composites"

样品 结晶度/
%
晶粒尺寸/nm
(100) (101) (110) (112)
PPFN60 50.2 5.1 4.2 4.9 3.9
PPFN75 88.0 5.9 5.0 5.6 4.5
PPFN90 76.9 5.4 4.6 5.1 4.4

Fig.5

TGA (a) and DTG (b) curves of PPFN and PPFN/ZnO composites"

Tab.3

Thermal weight loss data of PPFN and PPFN/ZnO composites"

样品 T0/℃ Tmax/℃ 残余质量/%
PPFN 224.8 287.2 0.1
PPFN60 225.2 388.4 8.5
PPFN75 226.9 392.9 15.7
PPFN90 226.1 391.7 12.1

Fig.6

UV Analysis of PPFN and PPFN/ZnO composites. (a) Solid UV-visible diffuse reflectance spectroscopy;(b) Plots of (αhν)2 vs. (hν) of samples"

Fig.7

Photocatalytic degradation of methylene blue dyes by PPFN and PPFN/ZnO composites. (a)PPFN;(b)PPFN60; (c)PPFN75; (d)PPFN90; (e) Standard curve of MB; (f) Influence of illumination time on MB degradation rate"

[1] 张京. 水溶性ZnO量子点的制备及其性能研究[D]. 天津:天津大学, 2012: 9-10.
ZHANG Jing. Synthesis and property studies of water-soluble ZnO quantum dots[D]. Tianjin: Tianjin University, 2012: 9-10.
[2] MCLAREN A, VALDES-SOLIS T, LI G, et al. Shape and size effects of ZnO nanocrystals on photocatalytic activity[J]. Journal of the American Chemical Society, 2009,131(35):12540-12541.
doi: 10.1021/ja9052703 pmid: 19685892
[3] TSENG Y K, HUANG C J, Cheng H M, et al. Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films[J]. Advanced Functional Materials, 2003,13(10):811-814.
[4] YANG R T, YU H Y, SONG M L, et al. Flower-like zinc oxide nanorod clusters grown on spherical cellulose nanocrystals via simple chemical precipitation method[J]. Cellulose, 2016,23(3):1871-1884.
[5] 许淑燕, 张培培, 熊杰. 氧化锌纳米纤维的制备及其光催化性能[J]. 纺织学报, 2011,32(3):15-20.
XU Shuyan, ZHNG Peipei, XIONG Jie. Preparation and photocatalytic activity of zinc oxide nanofibers[J]. Journal of Textile Research, 2011,32(3):15-20.
[6] HASSAN J J, HASSAN Z, ABU-HASSAN H. High-quality vertically aligned ZnO nanorods synthesized by microwave-assisted CBD with ZnO-PVA complex seed layer on Si substrates[J]. Journal of Alloys and Compounds, 2011,509(23):6711-6719.
[7] YU H Y, CHEN G Y, WANG Y B, et al. A facile one-pot route for preparing cellulose nanocrystal/zinc oxide nanohybrids with high antibacterial and photocatalytic activity[J]. Cellulose, 2015,22(1):261-273.
[8] LEE J M, PYUN Y B, YI J, et al. ZnO nanorod-graphene hybrid architectures for multifunctional conductors[J]. The Journal of Physical Chemistry C, 2009,113(44):19134-19138.
[9] 赵殿栋. 负载纳米ZnO非织造材料的制备和性能研究[D]. 无锡:江南大学, 2010: 3-4.
ZHAO Diandong. Preparation and properties of nonwovens loaded with nano-ZnO[D]. Wuxi: Jiangnan University, 2010: 3-4.
[10] 蓝杰蕊, 沈锦玉, 李玖明, 等. 紫外光固化技术对聚丙烯非织造布的亲水改性[J]. 纺织学报, 2017,38(5):98-103.
LAN Jierui, SHEN Jinyu, LI Jiuming, et al. Hydrophilic modification of polypropylene nonwoven fabric by UV curing technology[J]. Journal of Textile Research, 2017,38(5):98-103.
[11] FUJISHIMA A. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972,238:37-38.
pmid: 12635268
[12] 施秋萍. 纳米氧化锌晶体在棉纤维表面的在位生长及其影响因素的探讨[D]. 上海:东华大学, 2007: 9-10.
SHI Qiuping. Study on in-situ growth of nanocrystal ZnO on cotton fabric surface and its influencing factors[D]. Shanghai: Donghua University, 2007: 9-10.
[13] MANEKKATHODI A, LU M Y, WANG C W, et al. Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics[J]. Advanced Materials, 2010,22(36):4059-4063.
pmid: 20512820
[14] 肖文昌. β晶型聚丙烯的结晶行为及结晶动力学[D]. 上海:复旦大学, 2009: 24-25.
XIAO Wenchang. Crystallization behavior and crystallization kinetics of β-polypropylene[D]. Shanghai: Fudan University, 2009: 24-25.
[15] XU S, FU L, PHAM T S H, et al. Preparation of ZnO flower/reduced graphene oxide composite with enhanced photocatalytic performance under sunlight[J]. Ceramics International, 2015,41(3):4007-4013.
[16] PATTERSON A L, The Scherrer formula for X-Ray particle size determination[J]. Phys Rev, 1939,56(10):978-982.
[17] RUSDI R, RAHMAN A A, MOHAMED N S, et al. Preparation and band gap energies of ZnO nanotubes, nanorods and spherical nanostructures[J]. Powder Technology, 2011,210(1):18-22.
[18] TAUC J, GRIGOROVICI R, VANCU A. Optical properties and electronic structure of amorphous germanium[J]. Physica Status Solidi: B, 1966,15(2):627-637.
[1] SUI Zhihui, SAN Jinglong, WANG Xu, CHANG Jiang, WU Xuedong, ZU Bin. Synthesis and application of nano-ZnO / organic fluorosilicon modified polyacrylate emulsion [J]. Journal of Textile Research, 2020, 41(04): 84-90.
[2] LUO Jiani, LI Lijun, ZHANG Xiaosi, ZOU Hantao, LIU Xueting. Modification of activated carbon fiber using graphene oxide doped titanium dioxide [J]. Journal of Textile Research, 2020, 41(01): 8-14.
[3] XIN Minyue, ZHENG Qiang, WU Jiangdan, LIANG Liefeng. Preparation of porous ZnO films by coaxial electrospinning and photocatalytic performance thereof [J]. Journal of Textile Research, 2019, 40(10): 42-47.
[4] . Research of polyacrylate/nano-ZnO composite emulsion and its application on textile pigment printing [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(08): 78-83.
[5] . Preparation and electrical resistivity research of CNFs/ZnO composite nanofiber membrane [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(6): 25-0.
[6] . One-step in situ preparation of nano Ag-ZnO on cotton fabric for multifunctional finishing [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(3): 92-0.
[7] . Antistatic effect of PET fabrics finished with mixture of nano ZnO & Fe2O3 sol [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(4): 85-88.
[8] XU Shu-yan;ZHANG Pei-pei; XIONG Jie. Preparation and photocatalytic properties of ZnO nanofibers [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(3): 15-20.
[9] ZHOU Zhaoyi;ZHAO Yaping;GE Fengyan;CAI Zaisheng. Low-temperature solution growth of ZnO nanorods on PET fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(7): 6-10.
[10] Su Yanmeng;ZHANG Min. Anti-bacterial and anti-UV properties of silk treated with nano-super (AB) microcrystalline dispersion [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(5): 91-96.
[11] ZHAO Diandong;DENG Bingyao. Preparation of nonwovens loaded with nano-ZnO and its photocatalytic reactivity [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(12): 23-27.
[12] ZHANG Peipei;XU Shuyan;SONG Lixin;XIONG Jie. Preparation and characterization of ZnO-Fe3O4 composite nanofibers [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(11): 1-5.
[13] GUAN Fanglan. Preparation of functional textiles with nano ZnO/polysiloxane particles and their stability [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(01): 64-67.
[14] LIU Jiangfeng;DENG Bingyao;GAO Weidong. AFM observation on the surface morphology of ZnO/Ag/ZnO multilayer films deposited on fiber substrates [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(8): 23-26.
[15] HOU Dayin;LI Liangfei;WEI Qufu. Sputter coated nano-ZnO film on PET substrate and its ultraviolet radiation transmittance [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(2): 48-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!