Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (09): 1-7.doi: 10.13475/j.fzxb.20180806707

• Fiber Materials •     Next Articles

Electrospun poly(tetrafluoroethylene)/TiO2 photocatalytic nanofiber membrane and its application

ZHANG Mengyuan1,2, HUANG Qinglin1,2(), HUANG Yan1,2, XIAO Changfa1   

  1. 1. State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
    2. School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2018-08-27 Revised:2019-05-09 Online:2019-09-15 Published:2019-09-23
  • Contact: HUANG Qinglin E-mail:huangqinglin@tjpu.edu.cn

Abstract:

In order to solve the difficult recovery of photocatalyst titanium dioxide (TiO2) and unstable performance of the conventional carrier materials, poly(tetrafluoroethylene) (PTFE) was used as a stable TiO2 carrier, and polyvinyl alcohol (PVA) was used as the spinning carrier. The PTFE/PVA/TiO2 precursor fiber membrane was obtained by emulsion electrospinning, and then the PTFE/TiO2 photocatalytic nanofiber membrane was obtained after sintering. The effects of the amount of titanium dioxide on the structure and properties of the membranes were investigated by membrane morphology observation, pore size, porosity and hydrophobicity. The results show that with the increase of TiO2 solid content, the uniformity of membrane fiber diameter decreases and the pore size increases. The membrane was used in vacuum membrane distillation experiment. The flux is up to 35 L/(m2·h) and the desalination rate is over 99.98%. At the same time, the membrane was used for photocatalytic degradation of methylene blue dye aqueous solution (concentration of 10 mg/L). The degradation ratio reaches 99% after 5 h UV irradiation. After reuse, PTFE/titanium dioxide nanofiber membranes still maintain good membrane structure and photocatalytic performance.

Key words: poly(tetrafluoroethylene), titanium dioxide, electrospinning, photocatalysis, vacuum membrane distillation

CLC Number: 

  • TQ342.71

Tab.1

Sample names of membranes"

TiO2质量分数/% 初生纤维膜名称 烧结纤维膜名称
0.0 M-p0 M-s0
2.5 M-p1 M-s1
5.0 M-p2 M-s2
7.5 M-p3 M-s3
10.0 M-p4 M-s4

Fig.1

Schematic diagram of electrospinning apparatus 1—注射器; 2—PAN纺丝液; 3—PTFE/PVA/TiO2纺丝液;4—喷丝头; 5—纤维膜; 6—接收装置; 7—高压电源。"

Fig.2

Testing device for determining LEP of membrane 1—驱动泵; 2—纤维膜; 3—压力计;4—压力调节阀; 5—水。"

Fig.3

Curves of rheological properties. (a) Influence of TiO2 content on η-γ curve;(b) Influence of TiO2 content on σ-γ curve"

Tab.2

Non-Newtonian index of spinning solutions"

TiO2质量分数/% 非牛顿指数n
0.0 0.826 35
2.5 0.878 33
5.0 0.991 02
7.5 1.002 00
10.0 1.060 23

Fig.4

Morphologies of nascent and sintered membranes"

Tab.3

Properties of PTFE/TiO2 membranes"

样品名称 粗糙度/nm 比表面积/(m2·g-1) 接触角/(°)
M-s0 0.634 4.222 148.90±2.0
M-s1 0.972 4.695 144.50±1.9
M-s2 1.119 5.414 144.00±2.3
M-s3 1.274 6.967 143.46±1.0
M-s4 1.313 5.707 142.67±4.3

Tab.4

Properties of PTFE/TiO2 membranes"

样品名称 孔隙率/
%
平均孔径/
nm
液体渗透压/
MPa
断裂强度/
MPa
M-s0 63.2±0.3 580±4 0.14±0.02 2.83±0.25
M-s1 65.0±0.2 802±5 0.11±0.01 1.53±0.19
M-s2 69.5±0.3 900±3 0.09±0.01 1.11±0.27
M-s3 79.8±0.2 1 050±10 0.08±0.01 1.03±0.15
M-s4 64.6±0.1 1 460±10 0.05±0.02 0.99±1.08

Fig.5

Distillation performance of fiber membranes"

Fig.6

Morphology of PTFE/TiO2 fiber membranes before(a)and after(b)photocatalysis"

Fig.7

Efficiency of photocatalytic degradation of MB using PTFE/TiO2membranes"

Fig.8

Stability of PTFE/TiO2 membranes after several photocatalytic cycles"

[1] 赵卓凡. 纳米二氧化钛光催化剂在环境污染治理中的应用[J]. 科技创新与应用, 2016(27):182-183.
ZHAO Zhuofan. Application of nano titanium dioxide photocatalyst in environmental pollution control[J]. Technological Innovation and Application, 2016(27):182-183.
[2] 章丹, 徐斌, 朱培娟, 等. TiO2光催化降解亚甲基蓝机理的研究[J]. 华东师范大学学报(自然科学版), 2013(5):35-42.
ZHANG Dan, XU Bin, ZHU Peijuan, et al. Study on the mechanism of photocatalytic degradation of methylene blue by TiO2[J]. Journal of East China Normal University (Natural Science Edition), 2013(5):35-42.
[3] CHUNG W J, CHUN S Y, KIM S S, et al. Photocatalytic removal of tetracycline using TiO2/Ge composite optimized by response surface methodolo-gy (RSM)[J]. Journal of Industrial & Engineering Chemistry, 2016,36:320-325.
[4] 费锡智, 杨晶晶, 白仁碧. 光催化-膜分离耦合技术的水处理应用研究进展[J]. 水处理技术, 2014(12):11-18.
FEI Xizhi, YANG Jingjing, BAI Renbi. Research progress in application of photocatalysis membrane separation coupling technology in water treatment[J]. Water Treatment Technology, 2014(12):11-18.
[5] 孙洋洋. 磁性氧化石墨烯/TiO2复合光催化剂的制备及其光催化降解染料废水的研究[D]. 西安:长安大学, 2015: 2-15.
SUN Yangyang. Preparation of magnetic graphene oxide/TiO2 composite photocatalyst and its photocatalytic degradation of dye wastewater[D]. Xi'an: Chang'an University, 2015: 2-15.
[6] OLARU N, CALIN G, OLARU L. Zinc oxide nanocrystals grown on cellulose acetate butyrate nanofiber mats and their potential photocatalytic activity for dye degradation[J]. Industrial & Engineering Chemistry Research, 2014,53(46):17968-17975.
[7] 范文娟. 光催化剂载体:羧基氟碳共聚物纤维膜的制备及耐光降解性能研究[J]. 表面技术, 2013,42(5):89-92.
FAN Wenjuan. Photocatalyst carrier: preparation of photocatalyst carrier carboxyl fluorocarbon copolymer fiber membrane and its photodegradability[J]. Surface Technology, 2013,42(5):89-92.
[8] 陈哉娜, 冯潇潇, 韩丹敏, 等. 卟啉化聚合物纤维膜负载TiO2光催化剂的制备及其光催化性能研究[J]. 化学研究与应用, 2014(7):993-996.
CHEN Zaina, FENG Xiaoxiao, HAN Danmin, et al. Preparation and photocatalytic properties of porphyrin polymer membrane loaded TiO2 photocatalyst[J]. Chemical Research and Application, 2014(7):993-996.
[9] LEE E J, AN A K, HADI P, et al. Advanced multi-nozzle electrospun functionalized titanium dioxide/polyvinylidene fluoride-co-hexafluoropropylene (TiO2/PVDF-HFP) composite membranes for direct contact membrane distillation[J]. Journal of Membrane Science, 2017,524:712-720.
doi: 10.1016/j.memsci.2016.11.069
[10] 陶丽琴, 赵义侠, 康卫民, 等. 聚四氟乙烯超细纤维负载二氧化钛光催化性能[J]. 硅酸盐学报, 2016,44(1):89-94.
TAO Liqin, ZHAO Yixia, KANG Weimin, et al. Photocatalytic properties of ultrafine PTFE fiber supported titanium dioxide[J]. J Chin Ceram Soc, 2016,44(1):89-94.
[11] MOZIA S, MORAWSKI A W. Hybridization of photocatalysis and membrane distillation for purification of wastewater[J]. Catalysis Today, 2006,118(1/2):181-188.
doi: 10.1016/j.cattod.2005.12.003
[12] HUANG Y, HUANG Q L, LIU H, et al. Preparation, characterization, and applications of electrospun ultrafine fibrous PTFE porous membranes[J]. Journal of Membrane Science, 2017(523):317-326.
[13] KO F K. Fabrication of ultrafine fibrous polytetrafluoroethylene porous membranes by electrospinning[J]. Journal of Materials Research, 2009,24(9):2755-2761.
doi: 10.1557/jmr.2009.0347
[14] FENG S, ZHONG Z, WANG Y, et al. Progress and perspectives in PTFE membrane: preparation, modification, and applications[J]. Journal of Membrane Science, 2017,549.
[15] HUANG Q L, HUANG Y, XIAO C F, et al. Electrospun ultrafine fibrous PTFE-supported ZnO porous membrane with self-cleaning function for vacuum membrane distillation[J]. Journal of Membrane Science, 2017(534):73-82.
[1] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycapne / polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffoldrolacto [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[2] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
[3] CHEN Wendou, ZHANG Hui, CHEN Tianyu, WU Hailiang. Self-cleaning properties of titanium dioxide modified polyester / cotton blend fabrics [J]. Journal of Textile Research, 2020, 41(07): 122-128.
[4] WU Hong, LIU Chengkun, MAO Xue, YANG Zhi, CHEN Meiyu. Research progress in preparation and application of flexible zirconia nanofibers by electrospinning [J]. Journal of Textile Research, 2020, 41(07): 167-173.
[5] WANG Shubo, QIN Xiangpu, SHI Lei, ZHUANG Xupin, LI Zhenhuan. Preparation and properties of proton exchange membrane made from graphene oxide quantum dots / polyacrylonitrile nanofiber composites [J]. Journal of Textile Research, 2020, 41(06): 8-13.
[6] HAO Zhifen, XU Naiku, FENG Yan, DUAN Mengxin, XIAO Changfa. Preparation of fibrous membrane by blending polymethacrylate with polyacrylate and its oil / water separation property [J]. Journal of Textile Research, 2020, 41(06): 21-26.
[7] JIA Lin, WANG Xixian, TAO Wenjuan, ZHANG Haixia, QIN Xiaohong. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes [J]. Journal of Textile Research, 2020, 41(06): 14-20.
[8] WANG Tingting, LIU Liang, CAO Xiuming, WANG Qingqing. Preparation and photodynamic antimicrobial properties of hypocrellinpoly(methyl methacrylate-co-methacrylic acid) nanofibers [J]. Journal of Textile Research, 2020, 41(05): 1-7.
[9] SUN Fanchen, GUO Jing, YU Yue, ZHANG Sen. Preparation and properties of polyhydroxy fatty acid ester / sodium alginate composite electrospun nanofibers [J]. Journal of Textile Research, 2020, 41(05): 15-19.
[10] QIAN Yifan, ZHOU Tang, ZHANG Liying, LIU Wanshuang, FENG Quan. Preparation of polyacrylonitrile / cellulose acetate / TiO2 composite nanofiber membrane and its photocatalytic degradation performance [J]. Journal of Textile Research, 2020, 41(05): 8-14.
[11] WU Heng, JIN Xin, WANG Wenyu, ZHU Zhengtao, LIN Tong, NIU Jiarong. Preparation and piezoelectric properties of polyacrylonitrile / sodium nitrate nanofiber membrane [J]. Journal of Textile Research, 2020, 41(03): 26-32.
[12] LI Guoqing, LI Pingping, LIU Hanlin, LI Ni. Preparation and properties of polyacrylonitrile / polyurethane transparent film [J]. Journal of Textile Research, 2020, 41(03): 20-25.
[13] LI Sijie, ZHANG Caidan. Preparation of poly(aspartic acid) based fiber hydrogel and its drug release behavior [J]. Journal of Textile Research, 2020, 41(02): 20-25.
[14] LIU Yujian, TAN Jing, CHEN Mingjun, YU Shaoyang, LI Haoyi, YANG Weimin. Research progress of electrospun nanofiber yarns [J]. Journal of Textile Research, 2020, 41(02): 165-171.
[15] LUO Jiani, LI Lijun, ZHANG Xiaosi, ZOU Hantao, LIU Xueting. Modification of activated carbon fiber using graphene oxide doped titanium dioxide [J]. Journal of Textile Research, 2020, 41(01): 8-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!