Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (06): 176-181.doi: 10.13475/j.fzxb.20190103106

• Academic Salon Column for New Insight of Textile Science and Technology: Technology on Textiles for Safety and Protection • Previous Articles     Next Articles

Advances in knitted structural materials for safety protection

MA Pibo(), SUN Yaxin   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2019-01-14 Revised:2019-03-08 Online:2019-06-15 Published:2019-06-25

Abstract:

In order to improve the application of knitted structural materials for safety protection, the fabrication processes and performance characteristics of knitted protective materials made of plain structure, warp-knitted mesh structure, warp-knitted spacer structure, velvet structure, axial structure, auxetic structure and seamless structure fabric, are systematically introduced in this review. And the application and research status of knitted protective materials is summarized. Knitted protective materials have the advantages of comfort, excellent formability, strong designability and large protective area, therefore, they have a broad development prospect in the field of safety protection. At the same time, this review combines the current development of science and technology and the actual needs of people for protective products, and points out that knitted protective materials will be developed in the directions of intelligence, multi-function, lightweight, portable, comfort and fashion.

Key words: knitted structure material, safety protection, warp-knitted spacer structure, knitted velvet, formability, negative Poisson's ratio

CLC Number: 

  • TS186.9

Fig.1

Schematic diagram of temperature sensing spacer fabric"

Fig.2

Warp-knitted camouflage mat"

[1] LIU Xin, TANG Tian, YU Wenbin, et al. Multiscale modeling of viscoelastic behaviors of textile compo-sites[J]. International Journal of Engineering Science, 2018,130:175-186.
doi: 10.1016/j.ijengsci.2018.06.003
[2] SCHWAB M, TODT M, WOLFAHRT M, et al. Failure mechanism based modelling of impact on fabric reinforced composite laminates based on shell ele-ments[J]. Composites Science and Technology, 2016,128:131-137.
[3] WANG Chen, ROY Anish, CHEN Zhong, et al. Braided textile composites for sports protection: energy absorption and delamination in impact modelling[J]. Materials & Design, 2017,136:258-269.
[4] 周熠, 陈晓钢, 张尚勇, 等. 超高分子质量聚乙烯平纹织物在柔性防弹服中的应用[J]. 纺织学报, 2016,37(4):60-64.
ZHOU Yi, CHEN Xiaogang, ZHANG Shangyong, et al. Application of ultra-high molecular-weight polyethylene plain weave in soft body armour[J]. Journal of Textile Research, 2016,37(4):60-64.
[5] GOVARTHANAM K K, ANAND S C, RAJENDRAN S. Development of advanced personal protective equipment fabrics for protection against slashes and pathogenic bacteria: part 1: development ande valuation of slash-resistant garments[J]. Journal of Industrial Textiles, 2010,40(2):139-155.
[6] MIAO X H, JIANG G M, KONG X Y, et al. Experimental investigation on the stab resistance of warp knitted fabrics[J]. Fibres & Textiles In Eastern Europe, 2014,22(5):65-70.
[7] WANG L J, YU K J, ZHANG D T, et al. Cut resistant property of weft knitting structure: a review[J]. Journal of the Textile Institute, 2018,109(8):1054-1066.
[8] PARK Y, KIM K, BALUCH A H, et al. Empirical study of the high velocity impact energy absorption characteristics of shear thickening fluid (STF) impregnated Kevlar fabric[J]. International Journal of Impact Engineering, 2014,72:67-74.
[9] ZIELINSKA D, DELCZYK-OLEJNICZAK B, WIERZBICKI L, et al. Investigation of the effect of para-aramid fabric impregnation with shear thickening fluid on quasi-static stab resistance[J]. Textile Research Journal, 2014,84(15):1569-1577.
[10] GURGEN S, KUSHAN M C. The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives[J]. Composites Part A: Applied Science and Manufacturing, 2017,94:50-60.
[11] ZHANG X A, YU S J, XU B B, et al. Dynamic gating of infrared radiation in a textile[J]. Science, 2019,363(6427):619-623.
doi: 10.1126/science.aau1217 pmid: 30733415
[12] CIOBANU L. Development of 3D knitted fabrics for advanced composite materials[J]. Industria Textila, 2009,60(4):204-214.
[13] YE X, HU H, FENG X. Development of the warp knitted spacer fabrics for cushion applications[J]. Journal of Industrial Textiles, 2008,37(3):213-223.
[14] LIU Y P, HU H, LONG H R, et al. Impact compressive behavior of warp-knitted spacer fabrics for protective applications[J]. Textile Research Journal, 2012,82(8):773-788.
[15] LU Z Q, JING X Y, SUN B Z, et al. Compressive behaviors of warp-knitted spacer fabrics impregnated with shear thickening fluid[J]. Composites Science and Technology, 2013,88:184-189.
[16] LIU Y, HU H. Compression behavior of warp-knitted spacer fabrics for cushioning applications[J]. Textile Research Journal, 2012,82(1):11-20.
[17] 丁志荣, 张琰卿, 温娇, 等. 绒面吸波织物的制备及其吸波性能[J]. 纺织学报, 2015,36(10):44-48.
DING Zhirong, ZHANG Yanqing, WEN Jiao, et al. Preparation and microwave absorption performance of pile absorbing fabric[J]. Journal of Textile Research, 2015,36(10):44-48.
[18] HONG Icpyo. Analysis of radar cross section characteristics for camouflage net with stealth[J]. Journal of Korean Institute of Information Technology, 2015,13(4):53-60.
[19] BILISIK K. Two-dimensional (2D) fabrics and three-dimensional (3D) preforms for ballistic and stabbing protection: a review[J]. Textile Research Journal, 2017,87(18):2275-2304.
[20] 姜亚明, 邱冠雄, 刘良森. 纬编双轴向多层衬纱织物增强高性能头盔[J]. 针织工业, 2005(12):4-8,68.
JIANG Yaming, QIU Guanxiong, LIU Liangsen, et al. High performance helmet reinforced by the MBWK fabric[J]. Knitting Industries, 2005(12):4-8,68.
[21] 韩朝锋, 孙颖, 徐艺榕, 等. 头盔壳体用复合材料增强织物研究进展[J]. 纺织学报, 2014,35(8):116-123,132.
HAN Chaofeng, SUN Ying, XU Yirong, et al. Research progress of reinforced fabrics used for composite helmet shells[J]. Journal of Textile Research, 2014,35(8):116-123,132.
[22] ERDEM R. Evaluation of electromagnetic shielding effectiveness of multi-axial fabrics and their reinforced PES composites[J]. Bulletin of Materials Science, 2016,39(4):963-970.
[23] WANG Z Y, HU H. Auxetic materials and their potential applications in textiles[J]. Textile Research Journal, 2014,84(15):1600-1611.
[24] MA P B, CHANG Y P, BOAKYE A, et al. Review on the knitted structures with auxetic effect[J]. The Journal of The Textile Institute, 2017,108(6):947-961.
[25] WANG Z Y, HU H. 3D auxetic warp-knitted spacer fabrics[J]. Physica Status Solidi, 2014,251(2):281-288.
[26] COENEN V L, ALDERSON K L. Mechanisms of failure in the static indentation resistance of auxetic carbon fibre laminates[J]. Physica Status Solidi, 2011,248(1):66-72.
[27] JU J, SUMMERS J D. Hyperelastic constitutive modeling of hexagonal honeycombs subjected to in-plane shear loading[J]. Journal of Engineering Materials and Technology-Transactions of The Asme, 2011,133(1):011005.
[28] LIU Y P, HU H, LAM J K C, et al. Negative Poisson's ratio weft-knitted fabrics[J]. Textile Research Journal, 2010,80(9):856-863.
[29] ALI M, ZEESHAN M, QADIR M B, et al. Development and mechanical characterization of weave design based 2D woven auxetic fabrics for protective textiles[J]. Fibers and Polymers, 2018,19(11):2431-2438.
[30] 周铭, 杜赵群. 负泊松比结构纺织材料的研究进展[J]. 纺织学报, 2014,35(2):99-108.
ZHOU Ming, DU Zhaoqun. Research advances in negative Poisson's ratio structured textile materials[J]. Journal of Textile Research, 2014,35(2):99-108.
[31] CHANG Y P, MA P B, JIANG G M. Energy absorption property of warp-knitted spacer fabrics with negative Possion's ratio under low velocity impact[J]. Composite Structures, 2017,182:471-477.
[32] 丛洪莲, 张新杰, 王迪. 基于结构参数的纬编无缝塑身内衣设计模型[J]. 纺织学报, 2014,35(11):123-128.
CONG Honglian, ZHANG Xinjie, WANG Di. Model design of weft seamless underwear based on structure parameters[J]. Journal of Textile Research, 2014,35(11):123-128.
[33] 汝欣, 史伟民, 彭来湖, 等. 无缝针织内衣机的花型准备系统及数据安全[J]. 纺织学报, 2016,37(11):130-135.
RU Xin, SHI Weimin, PENG Laihu, et al. Pattern preparation system of seamless underwear knitting machine and data security[J]. Journal of Textile Research, 2016,37(11):130-135.
[1] . Study on bursting propertes of interior fabrec of automobiles roof [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(05): 44-47.
[2] CHEN Shaojuan;;MA Jianwei;CAO Nannan;QIU Guanxiong . Heading-ball method for evaluating fabric formability [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(6): 52-57.
[3] WU Weiwei;ZHANG Yang;ZHU Hongxiao. Relationship between worsted fabric formability and structural parameters of weft yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(11): 49-53.
[4] PAN Yonghui;FAN Rui;WANG Shitong. Prediction of fabric formability based on fuzzy neural network [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(9): 47-50.
[5] ZHANG Yan-ming;JIANG Ya-ming;QIU Guan-xiong;LIU Liang-sen. Formability of multi-layered biaxial weft knitted fabrics on double hemisphere [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(3): 54-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!