Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (04): 33-38.doi: 10.13475/j.fzxb.20190406306

• Textile Engineering • Previous Articles     Next Articles

Effect of spinning method on wrinkle-resistance and tensile elasticity of fabric

SU Xuzhong1, WEI Yanhong1,2, LIU Xinjin1(), XIE Chunping1   

  1. 1. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    2. Geron Card Clothing (Jiangsu) Co., Ltd., Nantong, Jiangsu 226143, China
  • Received:2019-04-23 Revised:2019-12-27 Online:2020-04-15 Published:2020-04-27
  • Contact: LIU Xinjin E-mail:liuxinjin2006@163.com

Abstract:

In order to develop natural wrinkle-resistant fabrics, the effect of spinning methods on fabric tensile elasticity and wrinkle-resistance was investigated. In this research, five types of 14.8 tex yarns were prepared using polyester (PET) filament and pure cotton yarn through complete condensing spinning, complete condensing spinning core-spun, complete condensing Siro-spinning core-spun, complete condensing Siro-spinning double-core core-spun and plied yarns. Five types of fabrics of the same specification were woven from these 5 types of yarns. Performances of the five fabrics were evaluated and analyzed for shape retention and deformation resistance, such as wrinkle resistance, dimensional stability, rigid flexibility and tensile deformation. The results show that the greater elastic deformation ratio and initial modulus of the fiber, the better the elasticity of the fabric, and the better the wrinkle recovery of the fabric. When the yarn is less in hairiness, smooth and even in surface, and high in initial modulus, the fabric demonstrates higher wrinkle resistance. The complete condensing Siro-spinning core-spun yarn and plied yarns show good wrinkle resistance, dimensional stability and tensile elastic recovery and crisp, and the apparent flatness grade of fabrics both is 3.5. Compared with the plied yarn, the production process of complete condensing Siro-spinning core-spun is short and the cost is low, and therefore it is more suitable for the preparation of high shape retention care-free shirt fabrics.

Key words: shape retention, wrinkle resistance, wrinkle recovery angle, wrinkle recovery rate, initial modulus, complete condensing spinning, care-free shirt fabric

CLC Number: 

  • TS116

Tab.1

Properties of PET filament"

长丝
编号
线密度/
tex
喷丝孔
个数
断裂伸长
率/%
断裂强度/
(cN·tex-1)
初始模量/
(cN·tex-1)
急弹性变
形比例/%
塑形变
形比例/%
缓弹性变
形比例/%
弹性回复
率/%
A 1.11 6 15.4 34.4 501.5 78.34 15.84 5.83 84.16
B 2.22 12 17.1 37.8 539.7 83.33 12.50 4.17 87.50

Tab.2

Yarn performances"

纱线
编号
纱线
成分
捻度/
(捻·(10 cm)-1)
强度/
(cN·tex-1)
初始模量/
(cN·tex-1)
CV值/
%
毛羽H
-50%细节/
(个·km-1)
+50%粗节/
(个·km-1)
+200%棉结/
(个·km-1)
≥3 mm毛羽/
(根· m-1)
a JC(100) 106.64 22.0 373.4 13.17 3.24 0 50 20.0 6.18
b JC/PET
(89/11)
107.24 21.3 380.0 12.30 3.07 0 35 17.5 3.79
c JC/PET
(89/11)
108.28 22.4 391.1 9.97 2.70 0 5 7.5 1.50
d JC/PET
(89/11)
108.93 22.6 376.1 10.03 2.70 0 0 7.5 1.17
e JC/PET
(89/11)
107.89 23.4 340.5 9.14 2.67 0 5 10.0 1.00

Tab.3

Fabric weave structure"

织物
编号
经纬纱
编号
组织 厚度/
mm
面密度/
(g·m-2)
织物密度/
(根·(10 cm)-1)
经向 纬向
1# a 左斜 0.35 145 512 354
2# b 左斜 0.35 147 512 354
3# c 左斜 0.36 160 512 354
4# d 左斜 0.37 160 512 354
5# e 右斜 0.36 150 512 354

Tab.4

Wrinkle recovery angle of five fabrics(°)"

织物
编号
急弹性折痕回复角 缓弹性折痕回复角
经向 纬向 经+纬 经向 纬向 经+纬
1# 84.02 97.83 181.85 100.90 113.51 214.41
2# 95.41 109.46 204.87 111.24 122.63 233.87
3# 106.66 103.53 210.19 120.09 118.12 238.21
4# 89.93 98.64 188.57 106.94 114.12 221.06
5# 92.37 110.78 203.15 108.46 123.83 232.29

Fig.1

Rapid(a) and slow(b) elastic recovery angle image of 2# fabric"

Fig.2

Dynamic wrinkle recovery angle of five fabrics"

Tab.5

CV values test results comparison of two instruments%"

织物
编号
急弹性折皱回复角CV值 缓弹性折皱回复角CV值
YG(B)541E JN-1 YG(B)541E JN-1
经向 纬向 经向 纬向 经向 纬向 经向 纬向
1# 7.32 4.35 3.06 2.83 7.15 10.50 2.46 3.17
2# 8.05 8.88 1.52 3.32 7.65 8.41 1.66 2.97
3# 9.34 6.17 1.72 1.79 8.40 4.28 1.62 2.00
4# 13.62 8.11 3.28 2.63 13.83 8.07 2.80 2.14
5# 6.66 7.79 2.06 1.93 6.33 6.63 1.72 1.95

Tab.6

Style test result of five fabrics"

织物编号 折皱回复率/% 硬挺度 柔软度 光滑度
1# 55.14 22.50 76.73 79.42
2# 57.45 22.62 75.16 79.92
3# 62.34 23.89 75.04 82.06
4# 58.26 22.90 73.64 80.10
5# 62.18 23.42 75.12 79.60

Fig.3

Apparent flatness of five fabrics"

Tab.7

Dimensional stability to washing of five fabrics%"

织物编号 经向 纬向
1# -3.6 -2.3
2# -1.7 -0.8
3# -1.4 -0.6
4# -1.7 -0.7
5# -1.4 -0.6

Tab.8

5% fixed elongation tensile resilience rate of fabric%"

织物
编号
经向 纬向
拉伸1次 拉伸5次 拉伸1次 拉伸5次
1# 81.93 73.56 71.69 62.42
2# 82.82 74.08 77.89 68.69
3# 85.37 78.94 81.18 71.54
4# 82.90 77.15 78.49 69.37
5# 84.85 78.11 82.38 73.08
[1] 刘刚中, 王晓. 纺织服装材料学[M]. 北京: 中国纺织出版社, 2017: 119.
LIU Gangzhong, WANG Xiao. Textile and apparel materials science[M]. Beijing: China Textile & Apparel Press, 2017: 119.
[2] 胡厚铭, 吴琦萍, 于银军. 高保形棉织物纺纱工艺的研究[J]. 棉纺织技术, 2019,47(3):46-48.
HU Houming, WU Qiping, YU Yinjun. Study on spinning process of high shape-retention cotton fabric[J]. Cotton Textile Technology, 2019,47(3):46-48.
[3] 张战旗. 经纬双弹机织免烫衬衫面料的工艺技术研究[J]. 染整技术, 2018,40(11):11-13,23.
ZHANG Zhanqi. Study on technology of wash and wear four-way stretch woven fabrics[J]. Textile Dyeing and Finishing Journal, 2018,40(11):11-13,23.
[4] 吕丽华, 吴坚, 叶方. 织物结构对折皱弹性和硬挺度的影响[J]. 纺织学报, 2004,25(5):99-101,153.
LÜ Lihua, WU Jian, YE Fang. Influences of fabric structure on creasability and stiffness[J]. Journal of Textile Research, 2004,25(5):99-101,153.
[5] 杨书会, 王瑞. 纯棉织物折皱回复角与其组织结构参数的关系[J]. 纺织学报, 2017,38(4):46-49.
YANG Shuhui, WANG Rui. Relationship between pure cotton fabric's wrinkle recovery angle and its organizational structure parameters[J]. Journal of Textile Research, 2017,38(4):46-49.
[6] 颜东, 邓继勇, 汪南方, 等. 有机硅改性聚氨酯/丙烯酸酯共聚乳液对棉织物的抗皱整理[J]. 纺织学报, 2018,39(1):89-93,110.
YAN Dong, DENG Jiyong, WANG Nanfang, et al. Anti-wrinkle finishing of organosilicone modified polyurethane/acrylate copolymer emulsion for cotton fabrics[J]. Journal of Textile Research, 2018,39(1):89-93,110.
[7] WANG L, LIU J L, PAN R R, et al. Dynamic measurement of fabric wrinkle recovery angle by video sequence processing[J]. Textile Research Journal, 2014,84(7):694-703.
[8] 潘宁. 一套用于织物感官性能评价的新型测量仪器系统[J]. 纺织导报, 2012(3):101-104.
PAN Ning. A new instrument for evaluating fabric performance related to human sensory perception-principles and applications[J]. China Textile Leader, 2012(3):101-104.
[9] 王蕾, 刘建立, 潘如如, 等. 基于视频序列的织物折皱回复角动态测量[J]. 纺织学报, 2013,34(2):55-60.
WANG Lei, LIU Jianli, PAN Ruru, et al. Dynamic measurement of fabric wrinkle recovery angle by video sequence[J]. Journal of Textile Research, 2013,34(2):55-60.
[10] 马芹, 刘学锋. 紧密纺织物服用性能测试与分析[J]. 纺织学报, 2011,32(3):67-69,76.
MA Qin, LIU Xuefeng. Test and analysis of serviceability of compact-spun-yarn fabrics[J]. Journal of Textile Research, 2011,32(3):67-69,76.
[11] 朱凡凡, 卢雨正, 王洋, 等. 集聚赛络纺纯涤纶纱的结构及其导湿性能[J]. 纺织学报, 2017,38(3):38-43.
ZHU Fanfan, LU Yuzheng, WANG Yang, et al. Structure and moisture conductivity of compact-siro spinning pure polyester yarns[J]. Journal of Textile Research, 2017,38(3):38-43.
[1] LI Xintong, GAO Zhe, GU Hongyang, CONG Honglian. Study on stiffness style of knitted suit fabrics [J]. Journal of Textile Research, 2020, 41(11): 53-58.
[2] HU Xiaorui, SUN Fengxin, XIAO Caiqin, GAO Weidong. Characterization of wrinkle recovery of fabrics based on in-situ mechanical testing [J]. Journal of Textile Research, 2020, 41(10): 41-45.
[3] WEI Yanhong, LIU Xinjin, XIE Chunping, SU Xuzhong, ZHANG Zhongxi. Shape retention and wearing properties of polyester filament/cotton composite yarn twill fabrics [J]. Journal of Textile Research, 2019, 40(12): 39-44.
[4] . Structure design and handle evaluation of warp knitted denim [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 45-50.
[5] . Relationship bepure cotton fabruc's wrinkle recovery angle and its organizatonal structure parameters [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(04): 46-49.
[6] . Measurement for fabric wrinkle resistance by simulating actual wear [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 56-60.
[7] . Formaldehyde-free durable press finishing of cotton fabrics with polycarboxylic acid [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 94-99.
[8] . Objective evaluation on wrinkling of garment joints based on wavelet analysis [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(12): 87-91.
[9] . Relationship between structure parameters and wrinkle resistance of worsted fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 37-41.
[10] . Yarn quality of novel blended spinning based on complete condensing siro-spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(08): 26-31.
[11] . Effect of fiber migration law in yarn body on yarn quality of complete condensing spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(01): 35-40.
[12] . Influence of compact spun yarns structure on yarn quality [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(08): 28-32.
[13] . Influence of experimental parameters on test results of cotton fabric wrinkle recovery angle [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(08): 33-37.
[14] . Novel complete condensing spinning system with strip groove structure [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(6): 137-141.
[15] . Dynamic measurement of fabric wrinkle recovery angle by video sequence [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(2): 55-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!