Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (11): 95-101.doi: 10.13475/j.fzxb.20190802407

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Preparation of Raney nickel and its application in synthesis of dye intermediates

FENG Pengyao1, WANG Rong1, QU Jian'gang1,2, DONG Ling1, HU Xiaolin1,2()   

  1. 1. College of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2019-08-09 Revised:2020-08-07 Online:2020-11-15 Published:2020-11-26
  • Contact: HU Xiaolin E-mail:nthxl2006@126.com

Abstract:

In order to meet the requirements for clean production and to improve the reaction rate and conversion rate of T-acid synthesis, the nickel-aluminum alloy powder was used as the catalyst precursor to prepare the Raney nickel catalyst by sodium hydroxide activation. The prepared structure and properties of the materials were studied by means of scanning electron microscope, X-ray diffractometer, specific surface area and pore structure tester and Zeta potential tester, and so on, and its application in the preparation of T-acid by hydrogenation reduction of nitro T-acid was investigated. The results show that the prepared Raney nickel catalyst is rich in pore structures, mainly mesopores, with a specific surface area of 46.88 m2/g and an average grain size of 15.8 nm. The optimum application process of the prepared Raney nickel in the hydrogenation reduction of nitro T-acid is as follows: catalyst dosage 2.500%, reaction pressure 2.0 MPa, reaction temperature 120 ℃, stirring speed 800 r/min. Under the best process conditions, the conversion of nitro T-acid reaches 99.07%, and there is no obvious deactivation after ten times of reuse.

Key words: Raney nickel, nitro T-acid, catalytic hydrogenation, T-acid, dye intermediate

CLC Number: 

  • TQ612.3

Fig.1

Nitro T-acid hydrogenation reaction equation"

Fig.2

XRD pattern of aluminum-nickel alloy"

Fig.3

XRD pattern of raney nickel"

Fig.4

SEM images of aluminum-nickel alloy (a) and Raney nickel(b) "

Tab.1

Main component content of aluminum-nickel alloy and Raney nickel"

元素种类 质量分数/%
镍铝合金 骨架镍
Ni 59.3 54.4
Al 36.7 14.4
C 4.0 4.3
O 0 26.9

Fig.5

N2 adsorption-desorption isotherms of Raney nickel and aluminum-nickel alloy"

Fig.6

Pore size distribution curves of Raney nickel"

Tab.2

Specific surface area and pore structure parameters of Raney nickel"

比表面积SBET/
(m2·g-1)
总孔容VP/
(cm3·g-1)
平均孔径D/
nm
DFT全孔径分析
微孔率/
%
中孔率/
%
大孔率/
%
46.88 0.063 5.4 0 95.20 4.80

Fig.7

Zeta potential of aluminum-nickel alloy and Raney nickel"

Fig.8

Nitro T-acid hydrogenation reduction process. (a)Amount of catalyst;(b)Reaction pressure;(c)Reaction temperature;(d)Stirring speed"

Fig.9

Reuse experiment result"

[1] YANG Fan, WANG Minjian, LIU Wei, et al. Atomically dispersed Ni as the active site towards selective hydrogenation of nitroarenes[J]. Green Chemistry, 2019,21(3):704-711.
doi: 10.1039/C8GC03664K
[2] 孟明扬, 徐广峰, 马瑛, 等. H酸清洁生产工艺改进[J]. 染料与染色, 2014(3):47-49.
MENG Mingyang, XU Guangfeng, MA Ying, et al. Review on process improvements of clean production of H-acid[J]. Dyestuffs and Coloration, 2014(3):47-49.
[3] 谭春伟, 崔艳姗. 液相加氢法合成H-酸工艺研究[J]. 化工科技, 2002(4):16-19.
TAN Chunwei, CUI Yanshan. A stduy on technology of H-acid synjournal by liquid-phase hydrogenation process[J]. Science and Technology in Chemical Industry, 2002(4):16-19.
[4] ZHANG Yaowen, LIU Chunling, FAN Guoli, et al. A robust-shell nanostructured nickel-iron alloy@nitrogen-containing carbon catalyst for the highly efficient hydrogenation of nitroarenes[J]. Dalton Transactions, 2018,47(38):13668-13679.
doi: 10.1039/c8dt03033b pmid: 30209499
[5] RYABCHUK P, AGOSTINI G, POHL M M. Intermetallic nickel silicide nanocatalyst: a non-noble metal-based general hydrogenation catalyst[J]. Science Advances, 2018,4(6):1-10.
[6] 马永欢. 液相催化加氢法合成T酸和CLT酸[D]. 大连:大连理工大学, 2008: 2-9.
MA Yonghuan. Synthesis of T-acid and CLT acid by liquid catalytic hydrogenation[D]. Dalian: Dalian University of Technology, 2008: 2-9.
[7] 靖丹, 曹亚峰, 李沅, 等. 雷尼镍催化加氢制备3,4-二甲基苯胺[J]. 大连工业大学学报, 2012(5):339-341.
JING Dan, CAO Yafeng, LI Yuan, et al. Preparation of 3,4-dimethylaniline bu raney nickel catalyst.[J]. Journal of Dalian Polytechnic University, 2012(5):339-341.
[8] TOMASZ W, LUKASZ P, KRZYSZTOF Z W, et al. Nickel nanowires: synjournal, characterization and application as effective catalysts for the reduction of nitroarenes[J]. Catalysts, 2018,8(11):1-12
doi: 10.3390/catal8010001
[9] 刘星. 骨架镍与负载镍催化愈创木酚加氢的研究[D]. 大连:大连理工大学, 2018: 6-11.
LIU Xing. The study of skeletal Ni and supported Ni for guaiacol hydrogenation[D]. Dalian: Dalian University of Technology, 2018: 6-11.
[10] URABE K, YOSHIOKA T, OZAKI A. Ammonia synjournal activity of a raney ruthenium catalyst[J]. Journal of Catalysis, 1978,54(1):52-56.
doi: 10.1016/0021-9517(78)90026-X
[11] SMITH A J, TRIMM D L. The preparation of skeletal catalysts[J]. Annual Review of Materials Reserach, 2005,35(1):127-142.
[12] 杨薇. 骨架镍上催化对苯二胺加氢制备1,4-环己二胺[D]. 上海:华东理工大学, 2012: 62-63.
YANG Wei. Catalytic hydrogenation of p-Phenylenediamine to prepare diaminocyclohexane over Raney-Ni[D]. Shanghai: East China University of Science and Technology, 2012: 62-63.
[13] 马永欢, 王晓会, 侯洁, 等. 液相催化加氢法合成T酸的研究[J]. 染料与染色, 2008,45(6):35-38.
MA Yonghuan, WANG Xiaohui, HOU Jie, et al. Research on the preparation of T-acid by liquid catalytic hydrogenation[J]. Dyestuffs and Coloration, 2008,45(6):35-38.
[14] 夏少武, 刘红天, 赵纯洁, 等. 雷尼镍活性本质的探讨[J]. 工业催化, 2003,11(2):36-41.
XIA Shaowu, LIU Hongtian, ZHAO Chunjie, et al. A probe into the mechanism for activity of raney-nickel catalysts[J]. Industrial Catalysis, 2003,11(2):36-41.
[15] 赖冬志, 陈文兴. 纳米镍胶体的制备及其在织物化学镀活化中的应用[J]. 纺织学报, 2012,33(11):77-80.
LAI Dongzhi, CHEN Wenxing. Preparation of nano-nickel colloid and its application to activation of electroless plating of fabrics[J]. Journal of Textile Research, 2012,33(11):77-80.
[16] YU Qinwei, LI Yani, ZHANG Qian, et al. Synjournal of 1,2-propanediamine via reductive amination of isopropanolamine over raney Ni under the promotion of K2CO3[J]. Chemical Papers, 2019,73:2019-2026.
doi: 10.1007/s11696-019-00734-9
[17] 陈康. 金属镍、氧化镍复合石墨烯催化材料的制备及其在葡萄糖检测中的应用[D]. 太原:太原理工大学, 2019: 33-34.
CHEN Kang. Preparation of metal nickel and nickel oxide catalytic materials supported by graphere and their application in glucose detection[D]. Taiyuan: Taiyuan University of Technology, 2019: 33-34.
[18] BAEK M H, YOON J W, HONG J S, et al. Application of TiO2-containing mesoporous spherical activated carbon in a fluidized bed photoreactor: adsorption and photocatalytic activity[J]. Applied Catalysis A: General, 2013,450(7):222-229.
doi: 10.1016/j.apcata.2012.10.018
[19] 唐成, 邹志娟, 宋昆鹏. Ni-P共掺杂超交联聚合物的制备及催化还原4-硝基苯酚[J]. 应用化学, 2019,36(7):782-789.
TANG Cheng, ZOU Zhijuan, SONG Kunpeng. Preparation of Ni-P co-doped hyper-crosslinked polymer and used for reduction of 4-nitrophenol[J]. Chinese Journal of Applied Chemistry, 2019,36(7):782-789.
[20] NJOKU V O, HAMEED B H. Preparation and characterization of activated carbon from corncob by chemical activation with H3PO4 for 2,4-dichlorophenoxyacetic acid adsorption[J]. Chemical Engineering Journal, 2011,173(2):391-399.
doi: 10.1016/j.cej.2011.07.075
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!