Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (08): 135-144.doi: 10.13475/j.fzxb.20191001110

• Comprehensive Review • Previous Articles     Next Articles

Research progress in structure design of carbon nanofibers and their adsorption mechanism and applications toward sewage pollutants

FANG Zhou1,2, SONG Leilei3, SUN Baojin4, LI Wenxiao2, ZHANG Chao2, YAN Jun2, CHEN Lei2()   

  1. 1. Tianjin Special Equipment Inspection Institute, Tianjin 300192, China
    2. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    3. AECC Aegis Advanced Protective Technology Co., Ltd., Tianjin 300304, China
    4. Suzhou Xiangcheng Testing Co., Ltd., Suzhou, Jiangsu 215110, China
  • Received:2019-10-08 Revised:2020-05-11 Online:2020-08-15 Published:2020-08-21
  • Contact: CHEN Lei E-mail:chenlei@tiangong.edu.cn

Abstract:

In order to better understand the applications of carbon nanofibers (CNFs) in sewage disposal and to realize the well-directed design of CNFs adsorbents with high adsorption performance, this paper comprehensively reviewed the structure design, preparation methods and functionalization strategies for CNFs prepared by electrospinning, chemical vapor deposition, template synthesis and other green methods, with adsorption mechanisms highlighted. In addition, a thorough comparison of adsorption performances toward heavy metal ions, cationic dyes and organic pollutants were listed. The advantages and disadvantages of CNFs prepared by different methods were compared based on their preparation efficiency, structures, adsorption and recycling performances. The extensive applications of CNFs adsorbents were elaborated, especially in the field of electric desalting and ion determination. Key research and development directions of CNFs absorbents for the future were concluded including industrialized and low cost preparation, adsorption toward various varieties of pollutants, improvement of mechanical properties, electric facilitated adsorption, recycling use and more extensive applications.

Key words: carbon nanofiber, sewage pollutants, adsorption performance, industrial production, sewage treatment

CLC Number: 

  • TQ028.2

Fig.1

Chemical reaction mechanism of PAN nanofibers under thermal treatment"

Fig.2

Synthesis of CNFs-CNTs and its adsorption process"

Fig.3

SEM images of CNFs-CNTs with various grown time by PECVD method(×5 000)"

Tab.1

Comparison on adsorption properties of CNTs in several literatures"

吸附剂 制备方法 目标污染物 吸附时间/
min
pH值 初始质量浓度/
(mg·L-1)
最大吸附量/
(mg·g-1)
参考文献
CNFs 静电纺 亚甲基蓝 60 10 25~250 72.46 [9]
CNFs 静电纺 环丙沙星 240 6 3.0 10.36 [11]
CNFs 静电纺 苯酚 2 880 300 251.6 [54]
多孔CNFs 静电纺 硅油 138.4 [31]
多孔CNFs 静电纺 Pb(Ⅱ) 1 中性 0.01~10 7.1 [55]
多孔CNFs 静电纺 亚甲基蓝 20 3 567 [56]
CNFs/CNTs 静电纺 Cr(Ⅵ) 400 3 60 76.62 [16]
CNFs/ZrO2 静电纺 Sb(Ⅲ) 720 7±0.2 500 53 [25]
Sb(Ⅴ) 720 7±0.2 500 43
CNFs-CNTs 静电纺/CVD Cr(Ⅵ) 120 3 60 235 [27]
碳纤维/CNFs CVD As(Ⅴ) 300 6.5 14 [38]
碳微珠/CNFs CVD Cr(Ⅵ) 10~150 41 [34]
活性碳纤维-CNFs CVD Pb(Ⅱ) 50 40 [39]
苯酚 80 275
活性炭-CNFs CVD Pb(Ⅱ) 60 5.5 250 77 [40-41]
石墨毡-CNFs CVD Pb(Ⅱ) 1 440 5 400 113 [37]
刚果红 1 440 5 400 162.2
高岭土-CNFs CVD Pb(Ⅱ) 480 250 211 [44]
N掺杂活性炭-CNFs CVD Cd(Ⅱ) 720 161±5 [42]
Pb(Ⅱ) 1 440 88±53
硅酸盐-CNFs 模板法 炔雌醇 240 47~60 [47]

模板法CNFs

模板法
亚甲基蓝
Pb(Ⅱ)
240
240
7
6
700
225
~720
~400

[43]
Cr(Ⅵ) 240 2 500 ~175
细菌纤维素多孔CNFs 绿色法 Sr(Ⅱ) ~120 4.5 58.72 [45]
石墨烯/CNFs 其他方法 CCl4 598 [32]
CNTs-Fe2O3 其他方法 苯酚 150 7 2 2.778 [29]
[1] 刘金燕, 刘立华, 薛建荣, 等. 重金属废水吸附处理的研究进展[J]. 环境化学, 2018,37(9):2016-2024.
LIU Jinyan, LIU Lihua, XUE Jianrong, et al. Research progress in adsorption of heavy metal ions in sewage[J]. Environmental Chemistry, 2018,37(9):2016-2024.
[2] 陶旭晨, 李林. 选择性吸附Pt(IV)的杯芳香烃纤维制备及其吸附动力学[J]. 纺织学报, 2019,40(3):20-31.
TAO Xuchen, LI Lin. Preparation and adsorption kinetics of calixarene fibers with selective adsorption of Pt(IV)[J]. Journal of Textile Research, 2019,40(3):20-31.
[3] 王杰, 汪滨, 杜宗玺, 等. 磺胺化聚丙烯腈纳米纤维膜的制备及其对Cr(VI) 和Pb(II) 的吸附性能[J]. 纺织学报, 2020,41(1):1-7.
WANG Jie, WANG Bin, DU Zongxi, et al. Preparation of sulfonated polyacrylonitrile nanofiber membranes and adsorption capacity for Cr(VI) and Pb(II)[J]. Journal of Textile Research, 2020,41(1):1-7.
[4] LI Baiyan, ZHANG Yiming, MA Dingxuan, et al. Mercury nano-trap for effective and efficient removal of mercury(II) from aqueous solution[J]. Nature Communications, 2014,5:1-7.
[5] MOHAMMADI S Z, AFZALI D, POURTALEBI D. Flame atomic absorption spectrometric determination of trace amounts of lead, cadmium and nickel in different matrixes after solid phase extraction on modified multiwalled carbon nanotubes[J]. Central European Journal of Chemistry, 2010,8(3):662-668.
[6] TEO W E, RAMAKRISHNA S. A review on electrospinning design and nanofibre assemblies[J]. Nanotechnology, 2006,17(14):89-106.
[7] 刘朝军, 刘俊杰, 丁伊可, 等. 静电纺丝法制备高效空气过滤材料的研究进展[J]. 纺织学报, 2019,40(6):134-142.
LIU Chaojun, LIU Junjie, DING Yike, et al. Research progress in preparation of high-efficiency air filter materials by electrospinning[J]. Journal of Textile Research, 2019,40(6):134-142.
[8] DONG Q, WAND G, WU T T, et al. Enhancing capacitive deionization performance of electrospun activated carbon nanofibers by coupling with carbon nanotubes[J]. Journal of Colloid and Interface Science, 2015,446:373-378.
pmid: 25595622
[9] WANG J H, ZHANG Z, ZHANG Q, et al. Preparation and adsorption application of carbon nanofibers with large specific surface area[J]. Journal of Materials Science, 2018,53(24):16466-16475.
[10] PARK C, ENGEL E S, CROWE A, et al. Use of carbon nanofibers in the removal of organic solvents from water[J]. Langmuir, 2000,16(21):8050-8056.
[11] IBUPOTO A S, QURESHI U A, AHMED F, et al. Reusable carbon nanofibers for efficient removal of methylene blue from aqueous solution[J]. Chemical Engineering Research & Design, 2018,136:744-752.
[12] LI X N, CHEN S, FAN X F, et al. Adsorption of ciprofloxacin, bisphenol and 2-chlorophenol on electrospun carbon nanofibers: in comparison with powder activated carbon[J]. Journal of Colloid and Interface Science, 2015,447:120-127.
pmid: 25702869
[13] LI X N, WANG W Q, DOU J, et al. Dynamic adsorption of ciprofloxacin on carbon nanofibers: quantitative measurement by in situ fluorescence[J]. Journal of Water Process Engineering, 2016,9:14-20.
[14] BECK R J, ZHAO Y, FONG H, et al. Electrospun lignin carbon nanofiber membranes with large pores for highly efficient adsorptive water treatment applica-tions[J]. Journal of Water Process Engineering, 2017,16:240-248.
[15] BAI Y, HUANG Z H, KANG F Y. Surface oxidation of activated electrospun carbon nanofibers and their adsorption performance for benzene, butanone and ethanol[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014,443:66-71.
[16] BAI Y, HUANG Z H, ZHANG Z X, et al. Improvement of the hydrophilicity of electrospun porous carbon nanofibers by grafting acid groups[J]. Journal of Colloid and Interface Science, 2013,394:177-182.
doi: 10.1016/j.jcis.2012.11.043 pmid: 23261348
[17] HOMAEIGOHAR S, STRUNSKUS T, STROBEL J, et al. A flexible oxygenated carbographite nanofilamentous buckypaper as an amphiphilic membrane[J]. Advanced Materials Interfaces, 2018,5(8):1800001.
[18] SUN W Y, WU H M, XU Z W, et al. Adsorption of heavy metal ions by carbon-nanofibers-blended carbon nanotubes[J]. Chemistry Select, 2018,3(44):12410-12414.
[19] 伍海明, 陈磊, 李翠玉. 碳纳米复合结构纤维膜吸附性能研究[J]. 天津纺织科技, 2018(1):31-35.
WU Haiming, CHEN Lei, LI Cuiyu. Adsorption properties of carbon nanocomposite fiber film[J]. Tianjin Textile Science & Technology, 2018(1):31-35.
[20] GAMINIAN H, MONTAZER M. Carbon black enhanced conductivity, carbon yield and dye adsorption of sustainable cellulose derived carbon nanofibers[J]. Cellulose, 2018,25(9):5227-5240.
doi: 10.1007/s10570-018-1929-6
[21] PETER K T, VARGO J D, RUPASINGHE T P, et al. Synjournal, optimization, and performance demonstration of electrospun carbon nanofiber-carbon nanotube composite sorbents for point-of-use water treatment[J]. ACS Applied Materials & Interfaces, 2016,8(18):11431-11440.
pmid: 27093306
[22] SI Y, REN T, DING B, et al. Synjournal of mesoporous magnetic Fe3O4@carbon nanofibers utilizing in situ polymerized polybenzoxazine for water purification[J]. Journal of Materials Chemistry, 2012,22(11):4619-4622.
[23] HAN C P, MA Q L, DONG X T, et al. In situ synjournal of porous Fe3O4/C composite nanobelts with tunable magnetism, electrical conduction and highly efficient adsorption characteristics[J]. Journal of Materials Science: Materials in Electronics, 2015,26(4):2457-2465.
[24] WU X Q, SHAO Z D, LIU Q, et al. Flexible and porous TiO2/SiO2/carbon composite electrospun nanofiber mat with enhanced interfacial charge separation for photocatalytic degradation of organic pollutants in water[J]. Journal of Colloid and Interface Science, 2019,553:156-166.
pmid: 31202052
[25] BEHNAM R, MORSHED M, TAVANAI H, et al. Destructive adsorption of diazinon pesticide by activated carbon nanofibers containing Al2O3 and MgO nanoparticles[J]. Bulletin of Environmental Contamination and Toxicology, 2013,91(4):475-480.
doi: 10.1007/s00128-013-1064-x pmid: 23912227
[26] DADVAR S, TAVANAI H, MORSHED M, et al. A study on the kinetics of 2-chloroethyl ethyl sulfide adsorption onto nanocomposite activated carbon nanofibers containing metal oxide nanoparticles[J]. Separation and Purification Technology, 2013,114:24-30.
[27] LUO J M, LUO X B, CRITTENDEN J, et al. Removal of antimonite (Sb(III)) and antimonate (Sb(V)) from aqueous solution using carbon nanofibers that are decorated with zirconium oxide (ZrO2)[J]. Environmental Science & Technology, 2015,49(18):11115-11124.
doi: 10.1021/acs.est.5b02903 pmid: 26301862
[28] REZANI-EIVARI M, AMIRI A, BGHAYERI M, et al. Magnetized graphene layers synthesized on the carbon nanofibers as novel adsorbent for the extraction of polycyclic aromatic hydrocarbons from environmental water samples[J]. Journal of Chromatography A, 2016,1465:1-8.
pmid: 27578405
[29] CHEN L, CHEN N N, WU H M, et al. Flexible design of carbon nanotubes grown on carbon nanofibers by PECVD Chock for enhanced Cr(VI) adsorption capa-city[J]. Separation and Purification Technology, 2018,207:406-415.
[30] WU Haiming, ZHOU Zhiyong, CHEN Lei, et al. PECVD-induced growing of diverse nanomaterials on carbon nanofibers under various conditions[J]. Materials Letters, 2018,216:291-294.
[31] ASMALY H A, ABUSSAUD B, IHSAN K, et al. Ferric oxide nanoparticles decorated carbon nanotubes and carbon nanofibers: from synjournal to enhanced removal of phenol[J]. Journal of Saudi Chemical Society, 2015,19(5):511-520.
[32] GUAN L, GUTIERREZ M C, ROLDAN-RUIZ M J, et al. Highly efficient and recyclable carbon-nanofiber-based aerogels for ionic liquid-water separation and ionic liquid dehydration in flow-through conditions[J]. Advanced Materials, 2019,31(39):1903418.
[33] LUO H L, XIE J, WANG J, et al. Step-by-step self-assembly of 2D few-layer reduced graphene oxide into 3D architecture of bacterial cellulose for a robust, ultralight, and recyclable all-carbon absorbent[J]. Carbon, 2018,139:824-832.
[34] XU Z Y, JIANG X D, TAN S C, et al. Preparation and characterisation of CNF/MWCNT carbon aerogel as efficient adsorbents[J]. Iet Nanobiotechnology, 2018,12(4):500-504.
doi: 10.1049/iet-nbt.2017.0234 pmid: 29768237
[35] TAKAHASHI Y, FUJITA H, SAKODA A. Adsorption of ammonia and water on functionalized edge-rich carbon nanofibers[J]. Adsorption, 2013,19(1):143-159.
[36] TALREJA N, KUMAR D, VERMA N. Removal of hexavalent chromium from water using Fe-grown carbon nanofibers containing porous carbon microbeads[J]. Journal of Water Process Engineering, 2014,3:34-45.
[37] OLIVERIA L C A D, SILVA A C D, MACHADO A R T, et al. Catalytic growth of carbon nanofibers on Cr nanoparticles on a carbon substrate: adsorbents for organic dyes in water[J]. Journal of Nanoparticle Research, 2013,15(5):1631.
[38] LAN Y K, CHEN T C, TSAI H J, et al. Adsorption behavior and mechanism of antibiotic sulfamethoxazole on carboxylic-functionalized carbon nanofibers-wncapsulated Ni magnetic nanoparticles[J]. Langmuir, 2016,32(37):9530-9539.
doi: 10.1021/acs.langmuir.6b02904 pmid: 27578402
[39] SHEN Y, LI L, XIAO K J, et al. Constructing three-dimensional hierarchical architectures by integrating carbon nanofibers into graphite felts for water purific-ation[J]. ACS Sustainable Chemistry & Engineering, 2016,4(4):2351-2358.
[40] GUPTA A K, DEVA D, SHARMA A, et al. Fe-grown carbon nanofibers for removal of arsenic(V) in wastewater[J]. Industrial & Engineering Chemistry Research, 2010,49(15):7074-7084.
[41] CHAKRABORTY A, DEVA D, SHARMA A, et al. Adsorbents based on carbon microfibers and carbon nanofibers for the removal of phenol and lead from water[J]. Journal of Colloid and Interface Science, 2011,359(1):228-239.
doi: 10.1016/j.jcis.2011.03.057 pmid: 21507421
[42] MAMUN A A, AHMED Y M, ALKHATIB M F R, et al. Lead sorption by carbon nanofibers grown on powdered activated carbon-kinetics and equilibrium[J]. Nano, 2015,10(2):1550017.
[43] AHEMD Y M, MAMUN A A, ALKHATIB M F R, et al. Efficient lead sorption from wastewater by carbon nanofibers[J]. Environmental Chemistry Letters, 2015,13(3):341-346.
[44] MODI A, BHADURI B, VERMA N. Facile one-step synjournal of nitrogen-doped carbon nanofibers for the removal of potentially toxic metals from water[J]. Industrial & Engineering Chemistry Research, 2015,54(18):5172-5178.
[45] FAGHIHIAN H, KOORAVAND M, ATARODI H. Synjournal of a novel carbon nanofiber structure for removal of lead[J]. Korean Journal of Chemical Engineering, 2013,30(2):357-363.
[46] PURVENO A D, TEIXEIRA A P C, DESOUZA N J, et al. Hybrid magnetic amphiphilic composites based on carbon nanotube/nanofibers and layered silicates fragments as efficient adsorbent for ethynilestradiol[J]. Journal of Colloid and Interface Science, 2012,379:84-88.
doi: 10.1016/j.jcis.2012.04.018 pmid: 22608147
[47] LIANG H W, CAO X, ZHANG W J, et al. Robust and highly efficient free-standing carbonaceous nanofiber membranes for water purification[J]. Advanced Functional Materials, 2011,21(20):3851-3858.
[48] HSIEH C T, CHEN J M, HUANG Y H, et al. Adsorptive surface coverage of carbon tetrachloride onto carbon nanofibers array[J]. Solid State Phenomena, 2007, 121-123:417-423.
[49] YE F, YANG P J. The batch and modeling investigation of Sr(II) adsorption on carbon nanofibers[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016,310(1):279-285.
[50] HU Q Y, ZHAO Q Z, HU B W, et al. Using of carbon nanofibers as effective scavengers for the uptake of Co(II) and Ni(II) in water by batch investigations[J]. Desalination and Water Treatment, 2018,136:299-305.
doi: 10.5004/dwt
[51] MUBARAK N M, FAGHIHZADEH A, TAN K W, et al. Microwave assisted carbon nanofibers for removal of zinc and copper from waste water[J]. Journal of Nanoscience and Nanotechnology, 2017,17(3):1847-1856.
doi: 10.1166/jnn.2017.12818
[52] GUPTA V K, AGARWAL S, TYAGI I, et al. Microwave-assisted hydrothermal synjournal and adsorption properties of carbon nanofibers for methamphetamine removal from aqueous solution using a response surface methodology[J]. Journal of Industrial and Engineering Chemistry, 2016,41(25):158-164.
[53] CHEN S S, CHEN D Z, WANG W X, et al. rGO-stabilized MnO/N-doped carbon nanofibers for efficient removal of Pb(II) ion and catalytic degradation of methylene blue[J]. Journal of Materials Science, 2017,52(9):5117-5132.
[54] MAHAR F K, HE L L, WEI K, et al. Rapid adsorption of lead ions using porous carbon nanofibers[J]. Chemosphere, 2019,225:360-367.
doi: 10.1016/j.chemosphere.2019.02.131 pmid: 30884297
[55] LI S Q, ZHANG Y, YOU Q L, et al. Highly efficient removal of antibiotics and dyes from water by the modified carbon nanofibers composites with abundant mesoporous structure[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018,558:392-401.
[56] LIU H, CAO C Y, WEI F F, et al. Flexible macroporous carbon nanofiber film with high oil adsorption capacity[J]. Journal of Materials Chemistry A, 2014,2(10):3557-3562.
[57] HUSSAIN T, WANG Y B, XIONG Z B, et al. Fabrication of electrospun trace NiO-doped hierarchical porous carbon nanofiber electrode for capacitive deionization[J]. Journal of Colloid and Interface Science, 2018,532:343-351.
doi: 10.1016/j.jcis.2018.07.129 pmid: 30096528
[58] WANG X Z, LI M G, CHEN Y W, et al. Electrosorption of NaCl solutions with carbon nanotubes and nanofibers composite film electrodes[J]. Electrochemical and Solid State Letters, 2006,9(9):23-26.
[59] GAO Y, PAN L K, ZHANG Y P, et al. Electrosorption of FeCl3 solutions with carbon nanotubes and nanofibers film electrodes grown on graphite substrates[J]. Surface Review and Letters, 2007,14(6):1033-1037.
doi: 10.1142/S0218625X07010597
[60] LI H B, PAN L K, ZHANG Y P, et al. Kinetics and thermodynamics study for electrosorption of NaCl onto carbon nanotubes and carbon nanofibers electro-des[J]. Chemical Physics Letters, 2010,485(1-3):161-166.
[61] ZHAN Y K, NIE C Y, LI H B, et al. Enhancement of electrosorption capacity of activated carbon fibers by grafting with carbon nanofibers[J]. Electrochimica Acta, 2011,56(9):3164-3169.
doi: 10.1016/j.electacta.2011.01.059
[62] DONG Q, WANG G, QIAN B Q, et al. Electrospun composites made of reduced graphene and activated carbon nanofibers for capacitive deionization[J]. Electrochimica Acta, 2014,137:388-394.
doi: 10.1016/j.electacta.2014.06.067
[63] LIU X, CHEN T, QIAO W C, et al. Fabrication of graphene/activated carbon nanofiber composites for high performance capacitive deionization[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017,72:213-219.
[64] LIU Y, MA J Q, LU T, et al. Electrospun carbon nanofibers reinforced 3D porous carbon polyhedra network derived from metal-organic frameworks for capacitive deionization[J]. Scientific Reports, 2016,6:32784.
pmid: 27608826
[65] CHEN S Z, ZHAN X L, LU D B, et al. Study on adsorption behavior of Mn(II) and Mn(VII) on modified carbon nanofibers and their determination by inductively coupled plasma mass spectrometry[J]. Atomic Spectroscopy, 2008,29(2):45-50.
[66] YAN J T, CHEN S Z, LI J F, et al. Study on the determination of rrace lead and cadmium by ICP-MS after preconcentration and separation on sarbon nanofibers loaded with 8-hydroxyquinoline[J]. Atomic Spectroscopy, 2017,38(2):42-47.
[1] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[2] WANG Zixi, HU Yi. Preparation and energy storage of porous carbon nanofibers based on ZnCo2O4 [J]. Journal of Textile Research, 2020, 41(11): 10-18.
[3] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
[4] WANG Jie, WANG Bin, DU Zongxi, LI Congju, LI Xiuyan, AN Boru. Preparation of sulfonated polyacrylonitrile nanofiber membranes and adsorption capacity for Cr(VI) and Pb(II) [J]. Journal of Textile Research, 2020, 41(01): 1-7.
[5] LI Shufeng, CHENG Bowen, LUO Yongsha, WANG Hui, XU Jingwei. Preparation and properties of polyacrylonitrile-based activated hollow carbon nanofibers [J]. Journal of Textile Research, 2019, 40(10): 1-6.
[6] . Research status of flexible strain sensor based on electrospun nanofibers [J]. Journal of Textile Research, 2018, 39(12): 152-157.
[7] . Research Progress in preparation and application of electrospinning porous carbon nanofibers [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(11): 168-176.
[8] . Influence of deep cryogenic treatment on SnSb/carbon nanofibers morphologies and its mechanism [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 23-27.
[9] . Cu(II) adsorption performance of carboxylation-modified electrospun cellulosic film from naturally brown cotton [J]. Journal of Textile Research, 2016, 37(4): 1-6.
[10] . Influence of spinning process and pre-oxidation conditions on PAN-based carbon nanofibers fabricated by centrifugal spinning [J]. Journal of Textile Research, 2016, 37(2): 7-12.
[11] . Preparation of core-shell Sn/C encapsulated carbon nanofibers and Its application as anode materials for lithium-ion battery [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(8): 1-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!