Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (10): 164-169.doi: 10.13475/j.fzxb.20191104106

• Machinery & Accessories • Previous Articles     Next Articles

Redundant actuation control strategy of positioning platform for 3-D additive printing machine

SHEN Ruichao, CHI Xinfu, SUN Yize()   

  1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
  • Received:2019-11-14 Revised:2020-06-30 Online:2020-10-15 Published:2020-10-27
  • Contact: SUN Yize E-mail:sunyz@dhu.edu.cn

Abstract:

The positioning accuracy is low when aligning the screens in automatic shoe upper printing, affecting the quality of upper printing. This paper proposed a positioning platform for printing machine based on redundant actuation. By adding a Y-axis on the base of original positioning platform, the rigidity and ability to manipulate heavy loads of the Y-direction of the positioning platform was effectively improved, thereby improving the positioning accuracy of the positioning platform of the printing machine. Due to the coupling of the mechanism motion during the movement of the redundant actuation mechanism, the geometric method was used to decouple the motion and the control strategy based on the use of electronic cam was proposed. Reversing backlash compensation was adopted, which further improved the positioning accuracy of the platform hence ensured the printing quality of the shoe upper. After experimental verification, the Y-direction positioning accuracy of the printing machine platform was improved by 85.7%, and that in the Z-direction rotation 72.9%. The X-direction reversing backlash was improved by 50%, the Y-direction reversing backlash by 75%, and the Z-direction rotation reversing backlash 42.86%.

Key words: printing machine, screen printing, redundant actuation, positioning platform, electronic cam, reversing backlash

CLC Number: 

  • TP23

Fig.1

3-D additive printing machine. (a) Overall structure of 3-D additive printing machine; (b) Structure of printing head"

Fig.2

Mechanism diagram of UVW positioning platform"

Fig.3

Schematic diagram of UVW platform rotation at any angle"

Fig.4

Schematic diagram of redundant actuation positioning platform around geometric center"

Fig.5

Schematic diagram of whether to reverse"

Tab.1

Measurement of X-direction reversing backlashmm"

运动
方向
第1次 第2次 第3次 换向间
隙众数
设置值 测量值 设置值 测量值 设置值 测量值
反向 -2.500 -2.495 -2.500 -2.500 -2.500 -2.500 0.005
正向 2.500 2.495 2.500 2.500 2.500 2.505
正向 0.200 0.200 0.200 0.200 0.200 0.195 0.005
反向 -0.200 -0.195 -0.200 -0.200 -0.200 -0.195
正向 0.050 0.040 0.050 0.050 0.050 0.050 0.010
反向 -0.050 -0.040 -0.050 -0.050 -0.050 -0.050

Tab.2

Measurement of Y-direction reversing backlashmm"

运动
方向
第1次 第2次 第3次 换向间
隙众数
设置值 测量值 设置值 测量值 设置值 测量值
反向 -2.500 -2.500 -2.500 -2.500 -2.500 -2.500 0.010
正向 2.500 2.490 2.500 2.500 2.500 2.510
正向 0.200 0.200 0.200 0.200 0.200 0.200 0.010
反向 -0.200 -0.190 -0.200 -0.210 -0.200 -0.195
正向 0.050 0.040 0.050 0.050 0.050 0.050 0.010
反向 -0.050 -0.040 -0.050 -0.050 -0.050 -0.050

Tab.3

Improved front and rear positioning accuracy comparison"

测量项目改进前后 X向平移定位
精度/mm
Y向平移定位
精度/mm
Z向旋转定位
精度/(°)
定位误差 改进前 0.010 0.070 0.004 8
改进后 0.010 0.010 0.001 3
换向间隙 改进前 0.010 0.040 0.001 4
改进后 0.005 0.010 0.000 8

Fig.6

Experiment platform"

[1] 高巧侠. 浅析丝网印刷质量的影响因素[J]. 广东印刷, 2017(3):39-40.
GAO Qiaoxia. Analysis of the factors affecting the quality of screen printing[J]. Guangdong Printing, 2017(3):39-40.
[2] 汪兴兴, 卓露, 朱昱, 等. R680系列自动印花机椭圆运动机构建模与仿真解析[J]. 纺织学报, 2017,38(3):143-148.
WANG Xingxing, ZHUO Lu, ZHU Yu, et al. Modeling and simulation of elliptical motion mechanism for R680 series automatic printing machine[J]. Journal of Textile Research, 2017,38(3):143-148.
[3] 王晓晖, 刘月刚, 孟婥, 等. 基于遗传算法和神经网络的3D增材印花工艺参数优化[J]. 纺织学报, 2019,40(11):168-174.
WANG Xiaohui, LIU Yuegang, MENG Chuo, et al. Optimization of process parameters for 3D additive screen printing based on genetic algorithm and neural network[J]. Journal of Textile Research, 2019,40(11):168-174.
[4] 李培, 李培波, 谢瑶, 等. 基于粒子群算法的3D印花网版对位的移动平台误差补偿[J]. 东华大学学报(自然科学版), 2018,44(2):282-288,308.
LI Pei, LI Peibo, XIE Yao, et al. Error compensation of mobile platform for 3D printing plate alignment based on particle swarm optimization[J]. Journal of Northeastern University (Natural Science), 2018,44(2):282-288,308.
[5] 但丁. 织物丝网印花设备及其关键技术研究[D]. 武汉:武汉纺织大学, 2014: 19-30.
DAN Ding. The study of automatic screen printing machine[D]. Wuhan: Wuhan Textile University, 2014: 19-30.
[6] 刘重阳. 基于双目视觉的UVW定位平台关键技术研究[D]. 北京:北方工业大学, 2017: 7-13.
LIU Chongyang. The research on key technologies of UVW positioning platform based on binocular vision[D]. Beijing: North China University of Technology, 2017: 7-13.
[7] YAO Jiantao, GU Weidong, FENG Zongqiang, et al. Dynamic analysis and driving force optimization of a 5-DOF parallel manipulator with redundant actuation[J]. Robotics and Computer Integrated Manufacturing, 2017,48:51-58.
doi: 10.1016/j.rcim.2017.02.006
[8] CHENG H, LIU G F, YIU Y K, et al. Advantages and dynamics of parallel manipulators with redundant actuation[C]// Proceedings of 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Maui: IEEE, 2001: 171-176.
[9] FIRMANI F, PODHORODESKI R P. Force-unconstrained poses for a redundantly-actuated planar parallel manipulator[J]. Mechanism and Machine Theory, 2004,39(5):459-476.
doi: 10.1016/j.mechmachtheory.2003.11.002
[10] LIU G F, YIU Y K, LI Z X. Inertia equivalence principle and adaptive control of parallel manipulators with redundant actuation[C]// Proceedings of the 2002 American Control Conference. Anchorage: IEEE, 2002: 3196-3201.
[11] 刘晓飞, 姚建涛, 赵永生. 冗余驱动并联机构的驱动力同步协调控制[J]. 计算机集成制造系统, 2018,24(9):2140-2149.
LIU Xiaofei, YAO Jiantao, ZHAO Yongsheng. Driving force synchronous control of redundantly actuated parallel manipulator[J]. Computer Integrated Manufacturing Systems, 2018,24(9):2140-2149.
[12] SHANG Weiwei, CONG Shuang. Robust nonlinear control of a planar 2-DOF parallel manipulator with redundant actuation[J]. Robotics and Computer Integrated Manufacturing, 2014,30(6):597-604.
doi: 10.1016/j.rcim.2014.04.004
[13] 王启明, 苏建, 隋振, 等. 一种新型冗余驱动并联机构位姿正解研究[J]. 机械工程学报, 2019(9):40-47.
pmid: 11539815
WANG Qiming, SU Jian, SUI Zhen, et al. Research on forward kinematics of a new type of redundant actuation parallel mechanism[J]. Journal of Mechanical Engineering, 2019 (9):40-47.
pmid: 11539815
[14] 许展望, 景群平, 王俊萍, 等. 高精度机械设备换向间隙补偿的控制系统和方法[J]. 重型机械, 2018(2):13-16.
XU Zhanwang, JING Qunping, WANG Junping, et al. Control system and method of reversing backlash compensation for high precision mechanical equip-ment[J]. Heavy Machinery, 2018(2):13-16.
[1] WANG Xiaohui, LIU Yuegang, MENG Zhuo, SUN Yize. Optimization of process parameters for 3D additive screen printing based on genetic algorithm and neural network [J]. Journal of Textile Research, 2019, 40(11): 168-174.
[2] . Modeling and simulation of elliptical motion mechanism for R680 series automatic printing machine [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 143-148.
[3] Huaizhong CHEN. Design of networked and electric control system for flat screen printing unit [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(2): 78-0.
[4] Xu-Zhong SU. Design of spinning-frame electronic cam [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(12): 117-0.
[5] JING Jun-Feng, LI Guang-Yan, LI Peng-Fei. Curve matching algorithm and its application in fabric automatic register detection [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(8): 145-148.
[6] . Design of electronic shogging system of warp knitting based on torque control mode [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(10): 122-127.
[7] LI Peng;HAO Kuangrong;DING Yongsheng. Fast matching algorithm and its application to rotary screen printing machines [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(7): 112-116.
[8] PAN Xianggao;LI Xiaofeng. Dyeing and printing machine synchronization system based on network and frequency conversion technologies [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(1): 108-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!