Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (10): 150-157.doi: 10.13475/j.fzxb.20191202508

• Apparel Engineering • Previous Articles     Next Articles

Development of novel intelligent silk quilt for young children

HUANG Yangyang1(), LIU Wei2, HUA Ying3, ZHAO Zhongqi4, XU Jin5   

  1. 1. Institute of Applied Technology of Silk, Suzhou Vocational University, Suzhou, Jiangsu 215000, China
    2. Suzhou Taihu Snow Silk Co., Ltd., Suzhou, Jiangsu 215000, China
    3. Department of Computer and the Information Engineering, Suzhou Vocational University, Suzhou, Jiangsu 215000, China
    4. Department of Electronic Information Engineering, Suzhou Vocational University, Suzhou, Jiangsu 215000, China
    5. Jiangsu Sericulture Society, Nanjing, Jiangsu 210000, China
  • Received:2019-12-10 Revised:2020-07-01 Online:2020-10-15 Published:2020-10-27

Abstract:

Aiming to prevent young children from kicking off quilt during sleeping, this paper reported on the development of a new silk intelligent quilt. In this research, micro temperature sensors were fitted at specific locations of the silk quilt, and the collected temperature data were conveyed to a mobile phone via Bluetooth. A mobile application procedure was created for reading the data and for analyzing temperature change relating to quilt off-kicking, and the sound and vibration alarm of mobile phone would be triggered once predetermined conditions were met. The product performance test results show that under the conditions of alarm time equalling or more than 7 min and a full off-kick, the warning success rate is 100%, warning time accuracy is less than or equals to 3 min, and there is not false alarm logged. Some special cases of kicking is also identified.

Key words: young children, quilt off-kicking, silk quilt, micro sensor, intelligent alarm

CLC Number: 

  • TS141.8

Fig.1

Temperature sensor by Bluetooth. (a) Front face of sensor; (b) Back face of sensor; (c) Side face of sensor"

Fig.2

Shell design model and finished product. (a) Front face of shell model; (b) Back face of shell model; (c) Final product"

Fig.3

Interface of mobile APP software. (a)Scanning and connection interface of Bluetooth; (b)Data displaying and alarm time threshold setting interface; (c)Kicking quilt alarm interface"

Fig.4

Plane position of sensor"

Fig.5

Stereo position of sensor"

Fig.6

Effect of sensor position in quilt on temperature acquisition. (a) Close to side of human body; (b) Aaway from side of human body"

Fig.7

Effect of ambient temperature on sensor"

Fig.8

Sensor temperature variation after completely kicking off quilt. (a)At ambient temperature 21 ℃; (b) At ambient temperature 26 ℃"

Fig.9

Temperature changes during actual sleep"

Tab.1

False alarm condition during normal sleep (temperature constant and decreasing)"

凌晨
时间
传感器
1/℃
传感器
2/ ℃
传感器
3/℃
温度变化 逻辑状态
4∶52 35.8 34.7 31.4 出现升温 跳出逻辑
4∶53 35.7 34.6 31.4 持平和下降 进入逻辑1 min
4∶54 35.6 34.6 31.4 持平和下降 逻辑计时2 min
4∶55 35.6 34.5 31.4 持平和下降 逻辑计时3 min
4∶56 35.4 34.5 31.3 持平和下降 逻辑计时4 min
4∶57 35.2 34.4 31.3 持平和下降 逻辑计时5 min
4∶58 34.6 34.3 31.3 持平和下降 逻辑计时6 min
4∶59 34.0 33.9 31.3 持平和下降 逻辑计时7 min
5∶00 33.6 33.5 31.4 出现升温 逻辑计时归零

Tab.2

False alarm during normal sleep (temperature constant)"

凌晨
时间
传感器
1/℃
传感器
2/ ℃
传感器
3/℃
温度变化 逻辑状态
4∶46 36.0 34.7 31.3 出现升温 跳出逻辑
4∶47 36.0 34.7 31.3 持平 进入逻辑1 min
4∶48 36.0 34.7 31.3 持平 逻辑计时2 min
4∶49 36.0 34.7 31.3 持平 逻辑计时3 min
4∶50 36.0 34.7 31.3 持平 逻辑计时4 min
4∶51 36.0 34.7 31.3 持平 逻辑计时5 min
4∶52 35.8 34.7 31.4 出现升温 逻辑计时归零

Tab.3

False alarm condition during normal sleep(temperature flat or falling)"

凌晨
时间
传感器
1/℃
传感器
2/ ℃
传感器
3/℃
温度变化 逻辑状态
2∶56 31.8 33.5 32.0 出现升温 跳出逻辑
2∶57 31.8 33.5 31.9 持平和下降 进入逻辑1 min
2∶58 31.8 33.5 31.9 持平 逻辑计时2 min
2∶59 31.8 33.5 31.9 持平 逻辑计时3 min
3∶00 31.8 33.5 31.9 持平 逻辑计时4 min
3∶01 31.8 33.5 31.9 持平 逻辑计时5 min
3∶02 31.8 33.6 31.9 出现升温 逻辑计时归零

Fig.10

Temperature changes of sensor after quilt partially kicked off"

Fig.11

Logical judgment model of kicking quilt"

Tab.4

Test results of actual produce performance"

报警成
功率/%
报警时间阈
值下限/min
报警时间阈
值偏差/min
误报警
现象
100 ≥7 延时≤3
[1] 中国纺织品商业协会. 中国蚕丝被行业发展报告2017[J]. 江苏丝绸, 2018(1):4-12.
China Textile Business Association. Report on the development of silk quilt industry in China 2007[J]. Jiangsu silk, 2018(1):4-12.
[2] 候天宇, 成楠, 潘勇强, 等. 基于Wi-Fi的婴儿床看护监测系统[J]. 工业控制计算机, 2019,32(7):41-44.
HOU Tianyu, CHENG Nan, PAN Yongqiang, et al. Babysitter monitoring system based on Wi-Fi[J]. Industrial control Computer, 2019,32(7):41-44.
[3] 姚建鑫, 张珣. 超低功耗智能监护报警器研究与设计[J]. 杭州电子科技大学学报, 2009,29(2):13-16.
YAO Jianxin, ZHANG Xun. Research and design of the intelligent guarding alarm system with multi -functional and low-power[J]. Journal of Hangzhou Dianzi University, 2009,29(2):13-16.
[4] 杨振雷. 智能婴儿监护系统设计. 学龄前儿童睡眠监测的产品设计[J]. 电子世界, 2012(22):127-128.
YANG Zhenlei. Design of intelligent baby monitoring system[J]. Electronic World, 2012(22):127-128.
[5] 丁旭光, 陈玉娟, 任潇, 等. 一种双功能踢被报警器设计[J]. 科技视界, 2019(6):32-33.
DING Xuguang, CHEN Yujuan, REN Xiao, et al. A two-function kick designed to be alarmed[J]. Science & Technology Vision, 2019(6):32-33.
[6] 刘永凯, 孙珅, 张斌, 等 一种基于智能手机的新型婴儿睡眠监护系统设计[J]. 中国医疗设备, 2018(9): 28, 31-41.
LIU Yongkai, SUN Shen, ZHANG Bin, et al. Design of a new baby sleep monitoring system based on smart-phone[J]. China Academic Journal Electronic Publishing House, 2018(9): 28, 31-41.
[7] 朱宝生. 利用TRIZ技术设计智能婴儿被[J]. 通讯世界, 2014(23):223-224.
ZHU Baosheng. Using TRIZ technology to design intelligent baby quilt[J]. Communication World, 2014(23):223-224.
[8] 邹淑芬. 小孩踢被报警器[J]. 家用电器, 1999(1):41.
ZOU Shufen. Alarm of kicking off quilt for child[J]. Household Electric Appliances, 1999(1):41.
[9] 邵慧. 学龄前儿童睡眠监测的产品设计[J]. 包装工程, 2017,38(22):66-70.
SHAO Hui. Product design of preschool children's sleep monitoring[J]. Packaging Engineering, 2017,38(22):66-70.
[10] 韩宇南, 吕英华, 张金玲, 等. 蓝牙平面倒F天线辐射对人体比吸收率仿真[J]. 电波科学学报, 2008,23(2):360-364.
HAN Yunan, LÜ Yinghua, ZHANG Jinling, et al. Specific absorption rate distribution in human body caused by PIFA for bluetooth applications[J]. Chinese Journal of Radio Science, 2008,23(2):360-364.
[1] MA Liyun, WU Ronghui, LIU Sai, ZHANG Yuze, WANG Jun. Preparation and electrical properties of triboelectric nanogenerator based on wrapped composite yarn [J]. Journal of Textile Research, 2021, 42(01): 53-58.
[2] WU Ronghui, MA Liyun, ZHANG Yifan, LIU Xiangyang, YU Weidong. Strain sensor based on silver nanowires coated yarn with chain stitch structure [J]. Journal of Textile Research, 2019, 40(12): 45-49.
[3] ZHANG Zhibin, LI Gang, MAO Senxian, LI Xunxun, CHEN Yushuang, MAO Qingshan, LI Yi, PAN Zhijuan, WANG Xiaoqin. Preparation and antibacterial activity of silk fibroin/chitosan microspheres [J]. Journal of Textile Research, 2019, 40(10): 7-12.
[4] . Preparation and property research of regenerated silk fibroin filaments using CaCl2-formid acid system [J]. Journal of Textile Research, 2016, 37(2): 1-6.
[5] . Effect of Cacl2 concentration on the solubility of silk fibroin in CaCl2-Formid Acid system [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(12): 1-0.
[6] . Influence on sericin fixation by GA on properties of cocoon silk [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(3): 57-0.
[7] ZHANG Guang-Zhi, HUANG Xiao-Hua, CHI 二Yan. The research on Pigment dyeing of silk fabric pretreated with the low temperature plasma [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(4): 82-85.
[8] . Alkaline Extraction of Natural Dye From Tea and Its Dyeing on Silk Fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(11): 73-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!