Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (06): 97-105.doi: 10.13475/j.fzxb.20201001809

;

• Textile Engineering • Previous Articles     Next Articles

Comparison of filtration efficiency standards for COVID-19 protective masks

PAN Hongjie1,2, YANG Xiaobing1,3(), ZHOU Chuan1,3, ZHANG Shouxin1,3, CHANG Suqin4, LUO Hongsen2   

  1. 1. State Key Laboratory of NBC Protection for Civilian, Beijing 100191, China
    2. Institute of Technology, Sichuan Normal University, Chengdu, Sichuan 610101, China
    3. Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, Beijing 100191, China
    4. Beijing Institute of Fashion Technology, Beijing 100029, China
  • Received:2020-10-18 Revised:2021-02-01 Online:2021-06-15 Published:2021-06-28
  • Contact: YANG Xiaobing E-mail:xbyoung2001@163.com

Abstract:

Masks from different countries satisfying different standards entered the Chinese market during the COVID-19 pandemic, which led to the public misunderstanding of the concepts relating to mask filtration efficiency. This paper introduced comprehensively the highly recognized multi-national standards, including GB 2626—2019, GB 19083—2010, US 42 CFR 84 Part K, EN 149:2001+A1:2009, and EN 13274—7:2019, focusing particularly on the filtration efficiency performance requirements and testing methods. This paper compared the performance requirements and markings of the particulate filtration efficiency in these standards, as well as the similarities and differences in the pretreatment, test conditions, and test procedures in the testing methods. Three types of masks were tested against different standard methods. Through standard comparative research and analysis, together with sample test, it will help to clarify the basic concepts in the filtration efficiency performance requirements and test methods of filtering half masks to protect against particles, promote all sectors of China to comprehensively understanding the performance and test method requirements of the main mask standards at home and abroad, and help the enterprises, testing agencies and governments to better control and supervise product quality.

Key words: COVID-19, protective mask, filtration efficiency, standard comparison, pre-conditioning

CLC Number: 

  • C976.2

Tab.1

Comparison of filtration efficiency requirement in main domestic and foreign standards for protective masks"

国家和
地区
标准号 颗粒物 过滤效率/% 测试流量/
(L·min-1)
加载与否
一级 二级 三级
中国 GB 19083—2010 非油性颗粒物 1级≥95 2级≥99 3级≥99.97 85
GB 2626—2019 KN非油性颗粒物 KN90≥90 KN95≥95 KN100≥99.97 85
KP油性颗粒物 KP90≥90 KP95≥95 KP100≥99.97 85
美国 42 CFR 84第K部分 N非油性颗粒物 N95≥95 N99≥99 N100≥99.97 85
P油性颗粒物 P95≥95 P99≥99 P100≥99.97 85
R油性颗粒物 R95≥95 R99≥99 R100≥99.97 85
欧盟 EN 149:2001+A1:2009 油性和非油性颗粒物 FFP1≥80 FFP2≥94 FFP3≥99 95

Tab.2

Comparison of pre-conditioning requirement in main domestic and foreign standards for protective masks"

国家和
地区
标准 样品 预处理要求 预处理条件
中国 GB 2626—2019 共20个
5个经温度湿度预处理;5个经机械强度预处理(如果适用);如果满足5.14.1,5个经清洗和/或消毒预处理
5个不处理
温度湿度预处理;若适用,应进行机械强度预处理;对满足5.14.1的产品,还应经清洗和/或消毒预处理 a)(38±2.5) ℃、相对湿度(85±5)%环境放置(24±1) h,(70±3) ℃干燥环境放置(24±1) h,(-30±3) ℃环境放置(24±1) h;
b)将样品侧放在钢制箱体内,振动持续时间20 min;
c)确保样品干燥,进行清洗和/或消毒,判断是否有效。
GB 19083—2010 共6个
3个经温度预处理
3个不经预处理
温度预处理 (70±3) ℃环境试验箱中放置24 h,(-30±3) ℃环境试验箱中放置24 h,经温度预处理后应在室温下恢复至少4 h再测试。
美国 42 CFR 84第K部分 共20个
都经温度湿度预处理
温度湿度预处理
(N系列)
(38±2.5) ℃、相对湿度(85±5)%环境放置(25±1) h。
欧盟 EN 149:2001+
A1:2009
共9个
3个模拟穿戴处理
3个机械强度+温度预处理
3个机械强度+温度预处
理+清洁消毒
温度预处理 a)(70±3) ℃干燥环境下放置24 h,室温下恢复至少4 h,(-30±3) ℃环境下放置24 h,经温度预处理后应在室温下恢复至少4 h再测试;
机械强度预处理 b)参照EN 143;
模拟穿戴预处理 c)呼吸机呼吸频率25次/min,潮气量2 L/次,20 min 测试1次,共10次;
清洁消毒预处理 d)按制造商说明进行一次清洁消毒处理。

Tab.3

Comparison of test conditions in main domestic and foreign standards for protective masks"

国家和
地区
标准号 气溶胶种类 质量浓度/(mg·m-3) 计数中位径/μm 几何标准差 温度/℃ 相对湿度/%
中国 GB 19083—2010 NaCl颗粒物 ≤200 0.075±0.020 ≤1.86
GB 2626—2019 NaCl颗粒物 ≤200 0.075±0.020 ≤1.86 25±5 30±10
油性颗粒物 50~200 0.185±0.020 ≤1.60 25±5
美国 42 CFR 84第K部分 NaCl颗粒物 ≤200 0.075±0.020 ≤1.86 25±5 30±10
DOP气溶胶 ≤200 0.185±0.020 ≤1.60 25±5
欧盟 EN 13274—7:2019 NaCl颗粒物 4~12 0.06~0.10 2~3 22±3 40
石蜡油气溶胶 15~25 0.29~0.45 1.6~2.2 24±8 20~80

Tab.4

Filtration efficiency under different flow rates for different masks %"

试样
编号
试样
名称
流量/(L·min-1)
30 60 85 95
1 KN95口罩 99.79 99.22 98.63 98.25
2 FFP2口罩 99.94 99.87 99.82 99.88
3 一次性医用普通口罩 93.07 85.08 82.72 80.89

Tab.5

Ventilation resistance under different flow rates for different masks Pa"

试样
编号
试样
名称
流量/(L·min-1)
30 60 85 95
1 KN95口罩 27 58 81 94
2 FFP2口罩 42 88 126 146
3 一次性医用普通口罩 29 52 79 90
[1] 杨小兵, 程钧, 张守鑫, 等. 口罩过滤效率检测用颗粒物粒径的换算和标准比对[J]. 纺织学报, 2020, 41(8):152-157, 171.
YANG Xiaobing, CHENG Jun, ZHANG Shouxin, et al. Particle size conversion for mask filter efficiency test and comparability of different standards[J]. Journal of Textile Research, 2020, 41(8):152-157, 171.
[2] 陈政, 郭秀静, 吴楠, 等. 我国非医用口罩标准及防护性能介绍[J]. 中国感染控制杂志, 2020, 19(3):262-266.
CHEN Zheng, GUO Xiujing, WU Nan, et al. Introduction of non-medical mask standards and protective performance in China[J]. Chinese Journal of Infection Control, 2020, 19(3):262-266.
[3] 左双燕, 陈玉华, 曾翠, 等. 各国口罩应用范围及相关标准介绍[J]. 中国感染控制杂志, 2020, 19(2):109-116.
ZUO Shuangyan, CHEN Yuhua, ZENG Cui, et al. Introduction of application scope and relevant standards of masks in different countries[J]. Chinese Journal of Infection Control, 2020, 19(2):109-116.
[4] 赵娟芝, 常生. 国内口罩标准对比分析与选择应用[J]. 针织工业, 2020, (3):9-13.
ZHAO Juanzhi, CHANG Sheng. Comparative analysis and selection and application of domestic mask stan-dards[J]. Knitting Industries, 2020(3):9-13.
[5] 中华人民共和国国家卫生健康委. 新型冠状病毒感染的肺炎防控方案(第三版):国卫办疾控函〔2020〕80号[EB/OL].( 2020-01-28)[ 2020-01-29]. http://www.nhc.gov.cn/jkj/s7923/202001/470b128513fe46f086d79667db9f76a5.shtml.
National Health Commission of the People's Republic of China. Pneumonia prevention and control plan for novel coronavirus infection (Third Edition): National Health Commission Disease Control and Prevention Official letter [2020] NO.80 [EB/OL]. ( 2020-01-28)[ 2020-01-29]. http://www.nhc.gov.cn/jkj/s7923/202001/470b128513fe46f086d79667db9f76a5.shtml.
[6] 国家中医药管理局办公室, 国家卫生健康委办公厅. 关于印发新型冠状病毒肺炎诊疗方案(试行第六版)的通知:国卫办医函(2020)145号[EB/OL].( 2020-02-19)[2020-02—20]. http://www.nhc.gov.cn/yzygj/s7653p/202002/8334a8326dd94d329df351d7da-8aefc2.shtml.
National Health Commission Office of the State Administration of Traditional Chinese Medicine. Novel coronavirus pneumonia diagnosis and treatment plan (trial version fifth): National Health Commission Medical Official letter [2020] NO.145[EB/OL]. ( 2020-02-19)[ 2020-02-20]. http://www.nhc.gov.cn/yzygj/s7653p/202002/8334a8326dd94d329df351d7-da8aefc2.shtml.
[7] 人民日报. 西班牙近2万医护人员感染新冠病毒其中20%已痊愈[EB/OL].( 2020-04-06) [ 2020-04-08]. https://view.inews.qq.com/a/20200406A0L4M300?uid=&chlid=news_news_subnews&devid=860076030536147&qimei=860076030536147&shareto=wx.
People's Daily. Nearly 20,000 medical workers in Spain were infected with COVID-19 and 20 percent of them recovered[EB/OL].( 2020-04-06)[ 2020-04-08]. https://view.inews.qq.com/a/20200406A0L4M300?uid=&chlid=news_news_subnews&devid=860076030536147&qimei=860076030536147&shareto=wx.
[8] STEVENS G A, MOYER E S. “Worst case” aerosol testing parameters: I. Sodium chloride and dioctyl phthalate aerosol filter efficiency as a function of particle size and flow rate[J]. American Industrial Hygiene Association Journal, 1989, 50(5):257-264.
doi: 10.1080/15298668991374615
[9] 杨小兵, 丁松涛. GB 2626—2019《呼吸防护自吸过滤式防颗粒呼吸器》国家标准解读[J]. 中国个体防护装备, 2020(1/2):7-10.
YANG Xiaobing, DING Songtao. Interpretation of the national standard GB2626—2019 "respiratory protection Non-powered air-purifying particle respirator"[J]. China Personal Protective Equipment, 2020(1/2):7-10.
[10] 韩玲, 马英博, 胡梦缘, 等. 国内外医用口罩防护指标及标准对比[J]. 西安工程大学学报, 2020, 34(2):13-19.
HAN Ling, MA Yingbo, HU Mengyuan, et al. Comparison of protective indexes and standards for medical masks at home and abroad[J]. Journal of Xi'an University of Technology, 2020, 34(2):13-19.
[11] RENGASAMY S, ZHUANG Z, NIEZGODA G, et al. A comparison of total inward leakage measured using sodium chloride (NaCl) and corn oil aerosol methods for air-purifying respirators[J]. Journal of Occupational and Environmental Hygiene, 2018, 15(8):616-627.
doi: 10.1080/15459624.2018.1479064
[12] SMEREKA J, RUETZLER K, SZARPAK L, et al. Role of mask/respirator protection against SARS-CoV-2[J]. Anesthesia and Analgesia, 2020, 131(1):33-34.
[13] TØNSAGER J. Disinfection and reuse of respiratory protection (filtering half mask)-compilation of litera-ture[J]. FFI Rapporter, 2020, 75(17):1-24.
[14] 赵藏, 韩玉洁. 中国与欧美口罩标准对比分析[J]. 针织工业, 2020(6):15-19.
ZHAO Zang, HAN Yujie. Comparative analysis of mask standards in China and Europe and America[J]. Knitting Industries, 2020(6):15-19.
[15] 周川, 杨小兵, 颜晓珊, 等. 空气过滤用复合纳米纤维材料研究进展[J]. 功能材料, 2018, 49(5):5056-5060, 5069.
ZHOU Chuan, YANG Xiaobing, YAN Xiaoshan, et al. Progress on the composite nanofiber materials used for air filtration[J]. Journal of Functional Materials, 2018, 49(5):5056-5060, 5069.
[16] 何俊美, 魏秋华, 任哲, 等. 在新型冠状病毒肺炎防控中口罩的选择与使用[J]. 中国消毒学杂志, 2020, 37(2):137-141.
HE Junmei, WEI Qiuhua, REN Zhe, et al. Selection and use of masks in the prevention and control of new coronavirus pneumonia[J]. Chinese Journal of Disinfection, 2020, 37(2):137-141.
[17] 朱银, 刘才容, 王康建, 等. 口罩过滤效率检测标准的分析[J]. 纺织科技进展, 2015(2):53-55.
ZHU Yin, LIU Cairong, WANG Kangjian, et al. Analysis of the test standard of mask filtration efficiency[J]. Progress in Textile Science and Technology, 2015(2):53-55.
[18] KONDA A, PRAKASH A, MOSS GA, et al. Aerosol filtration efficiency of common fabrics used in respiratory cloth masks[J]. ACS Nano, 2020, 14(5):6339-6347.
doi: 10.1021/acsnano.0c03252
[19] 周小平. NIOSH 对防颗粒物呼吸器过滤效率的检测、判定方法及对国家标准GB 2626—2006的启示[J]. 中国个体防护装备, 2012(5):25-29.
ZHOU Xiaoping. NIOSH's method for detecting and judging the filtration efficiency of anti-particulate respirators and its enlightenment to the national standard GB 2626—2006[J]. China Personal Protective Equipment, 2012(5):25-29.
[1] ZHANG Xing, LIU Jinxin, ZHANG Haifeng, WANG Yuxiao, JIN Xiangyu. Preparation technology and research status of nonwoven filtration materials for individual protective masks [J]. Journal of Textile Research, 2020, 41(03): 168-174.
[2] MIAO Te, ZHANG Ruquan, FENG Yang. Influence of nano-foam finishing on properties of aramid filter materials [J]. Journal of Textile Research, 2019, 40(09): 108-113.
[3] ZOU Zhiwei, QIAN Xiaoming, QIAN Yao, ZHAO Baobao, DUO Yongchao. Effect of oil removal on charging performance of needle-punched nonwoven filters [J]. Journal of Textile Research, 2019, 40(06): 79-84.
[4] HU Xuemin, YANG Wenxiu, LI Teng. Preparation of graphene oxide/polyvinglidene fluoride composite filtration membrane and its filtration performance [J]. Journal of Textile Research, 2019, 40(04): 32-37.
[5] . Interpretation of new ISO standard about detection of banned azo colorants [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 95-99.
[6] . Study on filtration efficiency of conductive media under forced static electricity [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(12): 55-59.
[7] . Influence of corona electret treatment on melt-blow PLA nonwovens material [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(09): 13-17.
[8] . Exploration of electret property of area bonded ES-fiber fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(9): 66-70.
[9] GAO Xiaoyan;ZHANG Lu;PAN Zhijuan. Porous characteristics and filtration properties of electrospun PA 6 fiber composite [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(1): 5-10.
[10] KANG Wei-min;CHENG Bo-wen;ZHUANG Xu-pin;DING Chang-kun. Electrospun nano-fiber composite membrane and its filtration properties [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(10): 6-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!