Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (03): 58-63.doi: 10.13475/j.fzxb.20201201106

• Fiber Materials • Previous Articles     Next Articles

Preparation and performance of modified polyacrylonitrile fibers photocatalyst with MIL-53(Fe)

DENG Yang1, SHI Xianbing1, WANG Tao1, LIU Liwei2, HAN Zhenbang1()   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Tianjin Yunda Industry and Trade Co., Ltd., Tianjin 301600, China
  • Received:2020-12-04 Revised:2021-12-30 Online:2022-03-15 Published:2022-03-29
  • Contact: HAN Zhenbang E-mail:hzbang@aliyun.com

Abstract:

MIL-53(Fe) powder suffers from limited photoabsorption, low catalytic efficiency and poor recycling ability in the application of photocatalysis. A highly efficient MIL-53(Fe) photocatalyst was constructed with irregular structure via an in-situ synthesis method using amidoximated polyacryloni-trile(PAN) fiber as the support. The surface morphology, microstructure and light absorption performance of the photocatalyst were characterized and analyzed by scanning electron microscope, X-ray diffraction, Fourier transform infrared spectroscopy and UV-Vis diffuse reflectance spectroscopy, and the photocatalytic performance was evaluated by the degradation of an organic dye. The results indicate that the in-situ synthesized MIL-53(Fe) are evenly distributed on the modified PAN fibrous support, and partial MIL-53(Fe) exhibit certain crystalline properties. Furthermore, the fibrous ligand greatly extends the spectral response of MIL-53(Fe) to 800 nm through ligand-to-metal charge transfer (LMCT) effect. Benefiting from the synergistic effect of fiber ligand and terephthalic acid ligand, the in-situ produced MIL-53(Fe) shows high photocatalytic activity for dye degradation under visible light irradiation, much superior to the MIL-53(Fe) powder and the fiber supported MIL-53(Fe) using a direct combination method. The findings provide a novel approach to design high-efficiency photocatalysts based on metal organic framework materials.

Key words: metal organic frameworks, modified polyacrylonitrile fiber, in-situ synthesis, photocatalyst, dye degradation, wastewater treatment

CLC Number: 

  • TQ619.2

Fig.1

SEM images of AO-PAN and MIL-53(Fe)-PAN and element distribution of MIL-53(Fe)-PAN(×1 000). (a) SEM image of AO-PAN; (b) SEM image of MIL-53(Fe)-PAN; (c) EDAX picture of MIL-53(Fe)-PAN; (d) Fe distribution map of MIL-53(Fe)-PAN"

Fig.2

XRD pattern of AO-PAN and MIL-53(Fe) series catalysts"

Fig.3

FT-IR spectra of AO-PAN and MIL-53(Fe) series catalysts"

Fig.4

UV-Vis DRS spectra of AO-PAN and MIL-53(Fe) series catalysts"

Fig.5

Degradation curves of RhB for MIL-53(Fe) series catalysts"

Fig.6

Effect of conversion rate of cyano group of AO-PAN on MIL-53(Fe)-PAN activity"

Fig.7

Effect of scavengers on photocatalytic degradation rate of RhB with MIL-53(Fe)-PAN"

Fig.8

Effect of solution pH on photocatalytic activity of MIL-53(Fe)-PAN"

[1] 谢艳新, 刘海娟, 尚磊, 等. 染料废水处理最新研究进展[J]. 印染助剂, 2020,37(7):11-16.
XIE Yanxin, LIU Haijuan, SHANG Lei, et al. The latest research progress of dye wastewater treatment[J]. Textile Auxiliaries, 2020,37(7):11-16.
[2] 任南琪, 周显娇, 郭婉茜, 等. 染料废水处理技术研究进展[J]. 化工学报, 2013,64(1):84-94.
REN Nanqi, ZHOU Xianjiao, GUO Wanqian, et al. Research progress of dye wastewater treatment technology[J]. CIESC Journal, 2013,64(1):84-94.
[3] 钱怡帆, 周堂, 张礼颖, 等. 聚丙烯腈/醋酸纤维素/TiO2复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020,41(5):8-14.
QIAN Yifan, ZHOU Tang, ZHANG Liying, et al. Preparation of polyacrylonitrile/cellulose acetate/TiO2 composite nanofiber membrane and its photocatalytic degradation performance[J]. Journal of Textile Research, 2020,41(5):8-14.
[4] 李庆, 管斌斌, 王雅, 等. 光敏剂敏化Cu-有机骨架对活性深蓝K-R 的高效光催化降解[J]. 纺织学报, 2020,41(10):87-93.
LI Qing, GUAN Binbin, WANG Ya, et al. Photosensitizers sensitized Cu-organic framework for highly efficient photocatalytic degradation of Reactive Dark Blue K-R[J]. Journal of Textile Research, 2020,41(10):87-93.
[5] 张金水, 王博, 王心晨. 氮化碳聚合物半导体光催化[J]. 化学进展, 2014,26(1):19-29.
ZHANG Jinshui, WANG Bo, WANG Xinchen. Carbon nitride polymer semiconductor photocatalysis[J]. Progress in Chemistry, 2014,26(1):19-29.
[6] HAN Z B, DENG Y, FEI J W, et al. Facile synjournal of amidoximated PAN fiber-supported TiO2 for visible light driven photocatalysis[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2020,600:10.
[7] ZHANG Y, ZHOU J, CHEN J, et al. Rapid degradation of tetracycline hydrochloride by heterogeneous photocatalysis coupling persulfate oxidation with MIL-53(Fe) under visible light irradiation[J]. Journal of Hazardous Materials, 2020,392:122315.
doi: 10.1016/j.jhazmat.2020.122315
[8] YANG C, YOU X, CHENG J H, et al. A novel visible-light-driven in-based MOF/graphene oxide composite photocatalyst with enhanced photocatalytic activity toward the degradation of amoxicillin[J]. Applied Catalysis B-Environmental, 2017,200:673-680.
doi: 10.1016/j.apcatb.2016.07.057
[9] LIANG R, JING F, SHEN L, et al. MIL-53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyes[J]. Journal of Hazardous Materials, 2015,287:364-372.
doi: 10.1016/j.jhazmat.2015.01.048
[10] HAN Z, HAN X, ZHAO X, et al. Iron phthalocyanine supported on amidoximated PAN fiber as effective catalyst for controllable hydrogen peroxide activation in oxidizing organic dyes[J]. Journal of Hazardous Materials, 2016,320:27-35.
doi: 10.1016/j.jhazmat.2016.08.004
[11] HAN Z, GUO J, LI W. Fe(bpy)32+ supported on amidoximated PAN fiber as effective catalyst for the photodegradation of organic dye under visible light irradiation[J]. Chemical Engineering Journal, 2013,228:36-44.
doi: 10.1016/j.cej.2013.05.006
[12] HAN Z, DONG Y, DONG S. Copper-iron bimetal modified PAN fiber complexes as novel heterogeneous Fenton catalysts for degradation of organic dye under visible light irradiation[J]. Journal of Hazardous Materials, 2011,189(1/2):241-248.
doi: 10.1016/j.jhazmat.2011.02.026
[13] 韩旭. 基于铁系金属配合物的负载型纤维集合体的构筑及其光催化性能研究[D]. 天津:天津工业大学, 2018: 1-200.
HAN Xu. Study on the construction and photocatalytic performance of supported fiber aggregates based on iron-based metal complexes[D]. Tianjin: Tiangong University, 2018: 1-200.
[14] 韩磊. 聚丙烯腈非均相偕胺肟化及其对铀酰离子吸附行为的研究[D]. 哈尔滨:哈尔滨工程大学, 2019: 1-88.
HAN Lei. Study on heterogeneous amidoximation of polyacrylonitrile and its adsorption behavior for uranyl ions[D]. Harbin: Harbin Engineering University, 2019: 1-88.
[15] 闫增元. MIL-53(Fe)光催化去除废水中典型核化污染物研究[D]. 北京: 军事科学院, 2019: 1-85.
YAN Zengyuan. Photocatalytic removal of typical nuclear pollutants from wastewater by MIL-53 (Fe)[D]. Beijing: Academy of Military Sciences, 2019: 1-85.
[16] LIU N, ZHENG Y J, JING C W, et al. Boosting catalytic degradation efficiency by incorporation of MIL-53(Fe) with Ti3C2Tx nanosheeets[J]. Journal of Molecular Liquids, 2020,311:113201.
doi: 10.1016/j.molliq.2020.113201
[1] WEI Na'na, LIU Die, MA Zheng, JIAO Chenlu. Adsorption performance of cellulose/chitosan magnetic aerogel prepared by freeze-thawing method [J]. Journal of Textile Research, 2022, 43(02): 53-60.
[2] ZHANG Mengdi, ZHANG Wei, YAO Jiming. Application of natural clay minerals in electrocoagulation of indigo dyeing wastewater [J]. Journal of Textile Research, 2022, 43(02): 196-201.
[3] YANG Tengxiang, SHEN Guodong, QIAN Lijiang, HU Huajun, MAO Xue, SUN Runjun. External electric field polarized Ag-BaTiO3/polyester fabric and its photocatalytic properties [J]. Journal of Textile Research, 2022, 43(02): 189-195.
[4] SHI Minhui, LI Bingrui, WANG Ting, WU Liguang. Mechanism and performance of TiO2 composite photocatalysts for photo-degradation of methyl-orange in highly saline wastewater [J]. Journal of Textile Research, 2021, 42(12): 103-110.
[5] LI Qing, CHEN Linghui, LI Dan, WU Zhiqiang, ZHU Wei, FAN Zenglu. Research progress in photocatalytic degradation of dyes using metal-organic frameworks [J]. Journal of Textile Research, 2021, 42(12): 188-195.
[6] ZHOU Yuanyuan, ZHENG Yuming, WU Xiaoqiong, SHAO Zaidong. Research progress of performance enhancement methods for electrospun nanofiber-based photocatalyst [J]. Journal of Textile Research, 2021, 42(11): 179-186.
[7] LAI Xing, WANG Chun, XIAO Changfa, WANG Liming, XIN Binjie. Progress in preparation and application of aromatic polyamide separation membrane [J]. Journal of Textile Research, 2021, 42(10): 172-179.
[8] CHEN Yali, ZHAO Guomeng, REN Lipei, PAN Luqi, CHEN Bei, XIAO Xingfang, XU Weilin. Preparation and performance of aramid fabric-based interfacial photothermal evaporation materials [J]. Journal of Textile Research, 2021, 42(08): 115-121.
[9] ZHANG Yuhan, SHEN Guodong, FAN Wei, SUN Runjun. Preparation of aramid fiber supported BiOBr composite materials and its photocatalytic degradation of dyeing wastewater [J]. Journal of Textile Research, 2021, 42(08): 128-134.
[10] ZHANG Tingting, XU Kexin, JIN Mengtian, GE Shijie, GAO Guohong, CAI Yixiao, WANG Huaping. Recent progress in preparation of cellulose-based organic-inorganic photocatalysts nanohybrids and it's application in water treatment [J]. Journal of Textile Research, 2021, 42(07): 175-183.
[11] CHEN Junliang, WU Jing, WANG Huaping, YANG Jianping. Research prospect of fibrous microplastics removal in aquatic environment [J]. Journal of Textile Research, 2021, 42(06): 18-25.
[12] TIAN Liqiang, LIANG Min, LONG Kang, CHEN Xiuqing. Synthesis of nanoscale iron supported on expanded graphite for removal of chromium (Ⅵ) and dyes from water [J]. Journal of Textile Research, 2021, 42(06): 133-139.
[13] JIANG Wenwen, MO Huilin, FAN Tingyue, ZHAO Ziyao, REN Yu, WANG Chunxia, ZHANG Wei, ZANG Chuanfeng. Preparation of Ag6Si2O7/TiO2 photocatalyst and its photocatalytic degradation of methylene blue [J]. Journal of Textile Research, 2021, 42(04): 107-113.
[14] LOU Yaya, WANG Jing, DONG Yanchao, WANG Chunmei. Preparation and decolorization of rayon based zeoliticimidazolate framework functional material [J]. Journal of Textile Research, 2021, 42(02): 142-147.
[15] HE Xuemei, MAO Haiyan, CAI Lu. Adsorption performance of chitosan based hybrid aerogel on reactive dyes [J]. Journal of Textile Research, 2021, 42(02): 148-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!