Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (12): 145-150.doi: 10.13475/j.fzxb.20210106306

• Machinery & Accessories • Previous Articles     Next Articles

Deformation and stress analysis on nippers of cotton combing machine

LIANG Zhuo1, JIA Guoxin2, REN Jiazhi1(), LI Jinjian1   

  1. 1. Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
    2. Henan University of Engineering, Zhengzhou, Henan 450007, China
  • Received:2021-01-26 Revised:2021-09-23 Online:2021-12-15 Published:2021-12-29
  • Contact: REN Jiazhi E-mail:rjzhi@163.com

Abstract:

In order to study the stress and deformation on the working state of the lower nipper in cotton spinning combers, and to analyze the kinetic of the nipper clamping process, mathematical models were established to describe the spring pressure, nipper clamping torque and nipper effective pressure, the deformation and stress of the lower nipper. Ansys finite element analysis software was used to simulate and analyze the stress and deformation of the lower nipper made from chromium alloy, aluminum alloy and titanium alloy. The results show that in the clamped state, the actual maximum stress of the lower nippers with the three different alloy materials is much smaller than its permittable stress, and that in the working state, the maximum deformation of the lower nipper using the three different alloy materials are 0.008 mm for titanium alloy, 0.010 3 mm for aluminum alloy, and 0.019 3 mm for chromium alloy. It is clear that when the titanium alloy lower nippers are used, the deformation of the lower nippers is minimal, which is beneficial to improve the gripping state of the upper and lower nippers and hence the quality of combing, and to reduce the loss of spinnable fibers.

Key words: combing machine, nipper, nipper clamping process, kinetic analysis, finite element analysis

CLC Number: 

  • TS112.2

Fig.1

Nipper mechanism"

Fig.2

Plane structure diagram of nipper pressure mechanism"

Fig.3

Spring pressure at closed jaws of nipper"

Tab.1

Results of various parameters of pressurizing mechanism"

分度 弹簧压缩
量/mm
上钳板托架
夹角θk/(°)
钳口压力/
N
钳口有效
压力/N
36 3.5 66.21 491.05 426.72
38 5.3 64.56 513.38 440.48
40 6.2 63.13 539.68 449.50
2 6.1 61.52 534.48 457.11
4 5.5 60.34 527.82 435.75
6 4.4 59.54 511.41 418.84
8 2.8 58.53 488.38 395.58

Fig.4

Three-dimensional structure diagram of lower nipper"

Fig.5

Lower nipper cantilever model"

Fig.6

Lower clamp simply supported beam model"

Fig.7

Finite element model of nipper mechanism"

Tab.2

Nipper material properties"

材料名称 许用应力/
MPa
密度/
(g·cm-3)
弹性模量/
GPa
泊松比
铬合金(1Cr13) 230 7.85 206 0.277
铝合金(2A11) 143 2.72 72 0.330
钛合金(TC4) 320 4.40 110 0.340

Fig.8

Stress cloud diagram of lower nippe made by different materials. (a) Chromium alloy; (b) Aluminum alloy;(c) Titanium alloy"

Fig.9

Deformation cloud map of lower nipper made by different materials. (a)Chromium alloy; (b) Aluminum alloy; (c) Titanium alloy"

[1] 任家智. 纺织工艺与设备:上册[M]. 北京: 中国纺织出版社, 2004:118-119.
REN Jiazhi. Textile technology and equipment: Volume One [M]. Beijing: China Textile & Apparel Press, 2004: 118-119.
[2] 任家智, 郁崇文. E7/6型精梳机曲柄半径对工艺性能的影响[J]. 纺织学报, 2004, 25(4):45-46.
REN Jiazhi, YU Chongwen. The influence of the crank radius of the E7/6 comber on the process perfor-mance[J]. Journal of Textile Research, 2004, 25(4):45-46.
[3] 任家智, 郁崇文. E7/6型精梳机钳板运动特性分析[J]. 纺织学报, 2004, 25(3):33-34.
REN Jiazhi, YU Chongwen. Analysis of movement characteristics of nippers of E7/6 comber[J]. Journal of Textile Research, 2004, 25(3):33-34.
[4] 刘鹏展, 贾国欣, 任家智. 精梳机钳板机构的振动分析[J]. 纺织学报, 2015, 36(9):108-113.
LIU Pengzhan, JIA Guoxin, REN Jiazhi. Vibration analysis of the nipper mechanism of the combing machine[J]. Journal of Textile Research, 2015, 36(9):108-113.
[5] 贾国欣, 杨明霞, 刘鹏展. 精梳机钳板摆动机构平衡及实验[J]. 河南工程学院学报, 2015(2):133-138.
JIA Guoxin, YANG Mingxia, LIU Pengzhan. Balance and experiment of nipper swing mechanism of combing machine[J]. Journal of Henan Institute of Technology, 2015 (2):133-138.
[6] 谢春萍. 纺纱工程[M]. 北京: 中国纺织出版社, 2019: 139.
XIE Chunping. Spinning engineering [M]. Beijing: China Textile & Apparel Press, 2019: 139.
[7] 张立彬, 冯斌. JSFA588型精梳机的设计理念与应用效果[J]. 棉纺织技术, 2013, 41(5):65-68.
ZHANG Libin, FENG bin. Design concept and application effect of jsfa588 comber[J]. Cotton Textile Technology, 2013, 41(5):65-68.
[8] 任家智, 贾国欣. 高效棉纺精梳关键技术[M]. 北京: 中国纺织出版社, 2017:19-31.
REN Jiazhi, JIA Guoxin. The key technology of high-efficiency cotton spinning combing [M]. Beijing: China Textile & Apparel Press, 2017: 19-31.
[9] 贾国欣, 任家智, 郝凤鸣. E7/6型精梳机偏心轴参数对工艺性能的影响[J]. 棉纺织技术, 2003, 31(12):18-22.
JIA Guoxin, REN Jiazhi, HAO Fengming. The influence of the parameters of the eccentric shaft of the E7/6 comber on the process performance[J]. Cotton Textile Technology, 2003, 31(12):18-22.
[10] 范钦珊, 唐静静. 工程力学[M]. 2版. 北京: 高等教育出版社, 2008:177-179.
FAN Qinshan, TANG Jingjing. Engineering mecha-nics[M]. 2nd ed. Beijing: Higher Education Press, 2008: 177-179.
[11] 马云, 张誉. 两段变截面悬臂矩形梁挠度的计算[J]. 结构工程师, 1994(1):1-5.
MA Yun, ZHANG Yu. Calculation of deflection of two-section variable cross-section cantilever rectangular beam[J]. Structural Engineer, 1994(1):1-5.
[12] 谢孟, 黄家鸣. 变截面悬臂梁的挠度计算[J]. 四川建筑科学研究, 1992(2):31-33.
XIE Meng, HUANG Jiaming. Deflection calculation of variable cross-section cantilever beams[J]. Sichuan Building Science Research, 1992(2):31-33.
[13] 俞茂宏, YOSHIMINE M, 强洪夫, 等. 强度理论的发展和展望[J]. 工程力学, 2004(6):1-20.
YU Maohong, YOSHIMINE M, QIANG Hongfu, et al. Development and prospect of strength theory[J]. Engineering Mechanics, 2004 (6):1-20.
[1] QUAN Zhenzhen, WANG Yihan, ZU Yao, QIN Xiaohong. Jet formation mechanism and film forming characteristics of multi-curved surface sprayer for electrospinning [J]. Journal of Textile Research, 2021, 42(09): 39-45.
[2] LU Jun, WANG Fujun, LAO Jihong, WANG Lu, LIN Jing. Finite element analysis of braided artificial ligaments of different structures under combined loading [J]. Journal of Textile Research, 2021, 42(08): 84-89.
[3] ZHOU Mengmeng, JIANG Gaoming, GAO Zhe, ZHENG Peixiao. Research progress in weft-knitted biaxial tubular fabric reinforced composites [J]. Journal of Textile Research, 2021, 42(07): 184-191.
[4] LI Jinjian, REN Jiazhi, LIANG Zhuo, JIA Guoxin. Dynamic analyses on nipper pendulum shaft in cotton combers [J]. Journal of Textile Research, 2021, 42(06): 160-165.
[5] LÜ Changliang, HAO Zhiyuan, CHEN Huimin, ZHANG Huile, YUE Xiaoli. Finite element analysis of loop shape in weft knitted fabrics with small deformation based on homogenization theory [J]. Journal of Textile Research, 2021, 42(03): 21-26.
[6] FENG Duanpei, SHANG Yuanyuan, LI Jun. Multi-scale simulation of impact failure behavior for 4- and 5-directional 3-D braided composites [J]. Journal of Textile Research, 2020, 41(10): 67-73.
[7] WU Xianyan, SHENTU Baoqing, MA Qian, JIN Limin, ZHANG Wei, XIE Sheng. Finite element analysis on structural failure mechanism ofthree-dimensional orthogonal woven fabrics subjected to impact of spherical projectile [J]. Journal of Textile Research, 2020, 41(08): 32-38.
[8] DAI Xin, LI Jing, CHEN Chen. Finite element simulation on wear resistance of copper-plated carbon fiber tows [J]. Journal of Textile Research, 2020, 41(06): 27-35.
[9] LIU Lidong, LI Xinrong, YANG Haipeng, BU Zhaoning. Research on servo drive of detaching roller of cotton combing machines [J]. Journal of Textile Research, 2020, 41(01): 158-164.
[10] HUANG Yaoli, LÜ Lihua, WANG Guanju. Bending properties of three-dimensional I-shaped woven composites [J]. Journal of Textile Research, 2019, 40(04): 66-71.
[11] . Modeling analysis on impact damage of 3-D angle-interlock woven composite based on finite element [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 63-68.
[12] . Modeling and experimental study on yarn’s cross-section compression deformation [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(02): 184-190.
[13] . Analysis of impact resistance of core structural reinforcement composite based on finite element analysis [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(08): 62-67.
[14] . Prediction of Elastic Property on 3D Tubular Woven Carbon Fiber Composite [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(9): 56-0.
[15] . Finite element analysis on electric field intensity and distribution during multi-needle electrospinning process [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(6): 1-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 116 -118 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 119 -120 .
[4] ZHANG Jin-qiu;ZHANG Hua;HAO Xin-min;JIANG Feng-qin. Relationship between high temperature scouring time and degumming quality of hemp fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 81 -83 .
[5] JIANG Ying;LIU Guo-lian. Study on consumer′s perceptual demand for the image of T-shirt[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 98 -100 .
[6] ZHENG Tian-yong;CUI Shi-zhong. Study on constructing the 3D yarn model by B-spline surface (part Ⅱ):inserting 3D bumping texture on the surface of the yarn[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(3): 24 -26 .
[7] CAO Hong-mei;SHEN Xiao-fei;REN Xue-qin;ZHAO Hong. Two-for-one twist spindle CHF[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(3): 77 -79 .
[8] DENG Hua;ZHANG Ji-mei;LI Xiu-ming;LI He;TANG Wan-sheng. Manufacture and property of multi-functional nano-titanium dioxide finishing agents for fabric[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(3): 92 -94 .
[9] YIN Xiu-lian;CHENG Xian-yi. Progress in research on computer-aided color matching[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(3): 106 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(03): 14 -15 .