Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (08): 80-87.doi: 10.13475/j.fzxb.20210802608

• Textile Engineering • Previous Articles     Next Articles

Simulation and analysis of carbon fiber composite unmanned aerial vehicle blade

WU Xia1, YAO Juming2,3,4, WANG Yan1, RIPON Das1, JIRI Militky5, MOHANAPRIYA Venkataraman5, ZHU Guocheng1,3()   

  1. 1. College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. Zhejiang-Czech Joint Laboratory of Advanced Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    4. College of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315201, China
    5. College of Textile Engineering, Technical University of Liberec, Liberec 46117, Czech Republic
  • Received:2021-08-03 Revised:2022-03-19 Online:2022-08-15 Published:2022-08-24
  • Contact: ZHU Guocheng E-mail:zgc100100@hotmail.com

Abstract:

In order to obtain the optimal layering mode of carbon fiber in unmanned aerial vehicle(UAV) blade, the layering mode of carbon fiber composite UAV blade is designed through ACP (ANSYS Composite PrepPost) module in Workbench. The three-dimensional model of UAV blade is established by using SolidWorks three-dimensional modeling software, and HyperMesh is used to clean and mesh the blade. Ansys Workbench Fluent is used to simulate the different speeds of UAV blade, extract the pressure load on the blade surface, and simulate and analyze the carbon fiber composite UAV blades with different layers. The mechanical simulation results of carbon fiber composite UAV blades are obtained. Based on Tsai–Wu failure criterion, the failure coefficient of each layer is calculated, and the optimal carbon fiber layering mode is [0°,90°,90°,90°,0°].

Key words: carbon fiber composite, unmanned aerial vehicle blade, fluid simulation, layer design

CLC Number: 

  • O613.71

Fig.1

Schematic diagram of material direction"

Fig.2

Blade simulation model of unmanned aerial vehicle"

Fig.3

UAV blade grid. (a) Blade grid; (b) Fastener grid"

Tab.1

8 layering methods(°)"

层数 方式1 方式2 方式3 方式4 方式5 方式6 方式7 方式8
第1层 90 0 90 0 90 0 90 0
第2层 90 90 0 0 90 90 0 0
第3层 0 0 0 0 90 90 90 90
第4层 90 90 0 0 90 90 0 0
第5层 90 0 90 0 90 0 90 0

Fig.4

Fluid grid diagram"

Fig.5

Nephogram of downwash airflow velocity at different speeds"

Fig.6

Cloud chart of blade surface pressure at 1 800 r/min. (a) Face of blade; (b) Back of blade; (c) Side of blade"

Fig.7

Partial enlarged drawing of total deformation line chart of blade"

Fig.8

Three\|dimensional diagram of maximum stress of each layer under different layering modes at 1 800 r/min speed"

Fig.9

Three\|dimensional diagram of maximum failure coefficient of each layer under different layering modes at 1 800 r/min speed"

[1] 晏磊, 廖小罕, 周成虎, 等. 国无人机遥感技术突破与产业发展综述[J]. 地球信息科学学报, 2019, 21(4):476-495.
doi: 10.12082/dqxxkx.2019.180589
YAN Lei, LIAO Xiaohan, ZHOU Chenghu, et al. The impact of UAV remote sensing technology on the industrial development of China: a review[J]. Journal of Geo-Information Science, 2019, 21(4):476-495.
[2] 孙钰, 周焱, 袁明帅, 等. 基于深度学习的森林虫害无人机实时监测方法[J]. 农业工程学报, 2018, 34(21):74-81.
SUN Yu, ZHOU Yan, YUAN Mingshuai, et al. UAV real-time monitoring for forest pest based on deep learning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(21):74-81.
[3] 段立勇. 基于无人机的风电叶片图像信息采集系统设计[D]. 哈尔滨: 哈尔滨理工大学, 2020:2-5.
DUAN Liyong. Design of image information acquisition system for wind turbine blade based on UAV[D]. Harbin: Harbin University of Science and Technology, 2020:2-5.
[4] 徐学宏, 王小群, 闫超, 等. 环氧树脂及其复合材料微波固化研究进展[J]. 材料工程, 2016, 44(8):111-120.
XU Xuehong, WANG Xiaoqun, YAN Chao, et al. Research progress on microwave curing of epoxy resin and its composites[J]. Journal of Materials Engineering, 2016, 44(8):111-120.
[5] 张青, 常新龙, 张有宏, 等. 炭纤维复合材料微波固化技术研究进展[J]. 固体火箭技术, 2018, 41(5):627-635.
ZHANG Qing, CHANG Xinlong, ZHANG Youhong, et al. Research progress on microwave curing technology of carbon fiber composites[J]. Journal of Solid Rocket Technology, 2018, 41(5):627-635.
[6] 张辰, 饶云飞, 李倩倩, 等. 碳纤维-玻璃纤维混杂增强环氧树脂复合材料低速冲击性能及其模拟[J]. 复合材料学报, 2021, 38(1):165-176.
ZHANG Chen, RAO Yunfei, LI Qianqian, et al. Low-velocity impact behavior and numerical simulation of carbon fiber-glass fiber hybrid reinforced epoxy composites[J]. Acta Materiae Compositae Sinica, 2021, 38(1):165-176.
[7] CHOI Jae-huyng, KIM Soo-hyun, BANG Hyung-joon, et al. Development of resin film infusion carbon composite structure for UAV[J]. Composites Research, 2019, 32:45-49.
[8] 郑传祥, 窦丹阳, 林娇, 等. 碳纤维复合材料防撞梁的设计与分析[J]. 机械制造, 2019, 57(6):57-62.
ZHENG Chuanxiang, DOU Danyang, LIN Jiao, et al. Design and analysis of anti-collision beam made of carbon fiber composite[J]. Machinery, 2019, 57(6):57-62.
[9] 陈静. 碳纤维复合材料传动轴的仿真分析[J]. 内燃机与配件, 2019, 4(17):65-66.
CHEN Jing. Simulation analysis of carbon fiber composite transmission shaft[J]. Internal Combustion Engine & Parts, 2019, 4(17):65-66.
[10] 周里群, 彭杰, 李玉平, 等. 2MW级风力发电机叶片结构强度设计仿真[J]. 计算机仿真, 2017, 34(12):101-109.
ZHOU Liqun, PENG Jie, LI Yuping, et al. Design simulation of 2MW wind turbine blade structure strength[J]. Computer Simulation, 2017, 34(12):101-109.
[11] 张昆, 汤文辉, 冉宪文. 正交各向异性CFRP材料的本构关系及其在平板撞击模拟中的应用[J]. 振动与冲击, 2019, 38(22):101-106, 129.
ZHANG Kun, TANG Wenhui, RAN Xianwen. Constitutive relationship of anisotropic CFRP material and its application in planar plate impact simulation[J]. Journal of Vibration and Shock, 2019, 38(22):101-106, 129.
[12] MIRSAYAR M M. A combined stress/energy-based criterion for mixed-mode fracture of laminated composites considering fiber bridging micromechanics[J]. International Journal of Mechanical Sciences, 2021. DOI: 10.1016/j.ijmecsci.2021.106319.
doi: 10.1016/j.ijmecsci.2021.106319
[13] ARRUDA M R T, ALMEIDA-FERNANDES L, CASTRO L, et al. Tsai-Wu based orthotropic damage model[J]. Composites Part C:Open Access, 2021. DOI: 10.1016/j.jcom.2021.100122.
doi: 10.1016/j.jcom.2021.100122
[14] 汤海武, 田清文, 石姗姗, 等. 纤维增强复合材料地铁司机室外罩仿真分析[J]. 大连交通大学学报, 2020, 41(6):46-50.
TANG Haiwu, TIAN Qingwen, SHI Shanshan, et al. Simulation of metro cab cover with fiber reinforced plastic material[J]. Journal of Dalian Jiaotong University, 2020, 41(6):46-50.
[15] 包荣剑. 林用小型垂直起降固定翼无人机的设计研究[D]. 哈尔滨: 东北林业大学, 2019:22-23.
BAO Rongjian. Design and research of small vertical takeoff and landing fixed-wing forest UAV[D]. Harbin: Northeast Forestry University, 2019:22-23.
[16] 杨知伦, 葛鲁振, 祁力钧, 等. 植保无人机旋翼下洗气流对喷幅的影响研究[J]. 农业机械学报, 2018, 49(1):116-122.
YANG Zhilun, GE Luzhen, QI Lijun, et al. Influence of UAV rotor down-wash airflow on spray width[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1):116-122.
[17] 雷瑶, 叶艺强, 王恒达, 等. 不同旋翼间距下共轴双旋翼无人机的气动特性[J/OL]. 机械科学与技术:1-7[2021-07-10].https://doi.org/10.13433/j.cnki.1003-8728.20200352.
LEI Yao, YE Yiqiang, WANG Hengda, et al. Aerodynamic characteristics of coaxial rotors UAV with different rotor spacing[J/OL]. Mechanical Science and Technology for Aerospace Engineering:1-7[2021-07-10].https://doi.org/10.13433/j.cnki.1003-8728.20200352.
[18] 边永亮, 李建平, 王鹏飞, 等. 单旋翼无人机流场分布特征及作业性能试验研究[J]. 河北农业大学学报, 2020, 43(3):115-120,129.
BIAN Yongliang, LI Jianping, WANG Pengfei, et al. Experimental study on distribution characteristics and operating performance of airflow field in single rotor UAV[J]. Journal of Hebei Agricultural University, 2020, 43(3):115-120,129.
[19] 杨海涛, 夏巍, 刘悦, 等. 共轴双旋翼气动特性数值仿真研究[J]. 机械科学与技术, 2020, 39(2):303-308.
YANG Haitao, XIA Wei, LIU Yue, et al. Numerical simulation on aerodynamic performance of coaxial twin-rotors[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(2):303-308.
[20] 陈志明, 袁剑平, 严谨, 等. 基于MRF方法和滑移网格的螺旋桨水动力性能研究[J]. 船舶工程, 2020, 42(S1):157-162,311.
CHEN Zhiming, YUAN Jianping, YAN Jin, et al. Study on hydrodynamic performance of propeller based on MRF model and sliding mesh[J]. Ship Engineering, 2020, 42(S1):157-162,311.
[21] PATIL Harshal, AJEY Kumar Patel, HARISH J Pant, et al. CFD simulation model for mixing tank using multiple reference frame (MRF) impeller rotation[J]. ISH Journal of Hydraulic Engineering, 2021, 27(2):1-10.
[22] 曹铭超. 风力发电机叶片设计模拟[D]. 南京: 东南大学, 2019:26-38.
CAO Mingchao. Design and simulation of wind turbine blade[D]. Nanjing: School of Automation Southeast University, 2019:26-38.
[23] 王福山. 基于流固耦合的机车散热器风扇疲劳性能与模态分析[D]. 大连: 大连交通大学, 2020:35-65.
WANG Fushan. Fatigue performance and modal analysis of locomotive cooling fan based on fluid-solid coupling method[D]. Dalian: Dalian Jiaotong University, 2020:35-65.
[24] 吴京泰. 10 MW浮式风机气动性能的CFD流固耦合模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2019:51-63.
WU Jingtai. CFD simulation with fluid-structure interaction for aerodynamic performace of a 10 MW floating off-shore wind turbine[D]. Harbin: Harbin Institute of Technology, 2019:51-63.
[25] 李家盛. 螺旋桨和水翼流固耦合机理与计算方法研究[D]. 上海: 上海交通大学, 2018:62-69.
LI Jiasheng. Study on fluid-struture interaction mechanism and algorithm of propellers and hydrofoils[D]. Shanghai: Shanghai Jiao Tong University, 2018:62-69.
[1] . Multi-layer design of multi-bar Raschel laces [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 44-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!