Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (10): 247-254.doi: 10.13475/j.fzxb.20250203502
• Comprehensive Review • Previous Articles Next Articles
LIU Chu1, ZHANG Xianghui1,2(
), ZHANG Zhaohua1,2, NIU Wenxin3,4, WANG Shitan3,4
CLC Number:
| [1] |
VALENZA A, BIANCO A, FILINGERI D. Thermosensory mapping of skin wetness sensitivity across the body of young males and females at rest and following maximal incremental running[J]. The Journal of Physiology, 2019, 597(13): 3315-3332.
doi: 10.1113/JP277928 pmid: 31093981 |
| [2] | 何满堂, 郭俊泽, 王黎明, 等. 纳米纤维包芯纱截面方向热湿耦合传递过程的模拟[J]. 纺织学报, 2024, 45(8): 142-149. |
| HE Mantang, GUO Junze, WANG Liming, et al. Simulation of coupled thermal-moisture transfer in cross-section of nanofiber core-spun yarns[J]. Journal of Textile Research, 2024, 45(8): 142-149. | |
| [3] | 李美泽, 方青青, 齐业雄. 芳纶、海藻纤维复合高隔热针织面料开发[J]. 针织工业, 2024(8): 18-21. |
| LI Meize, FANG Qingqing, QI Yexiong. Development of aramid and seaweed fiber knitted composite fabric with high thermal insulation performance[J]. Knitting Industries, 2024(8): 18-21. | |
| [4] | 昌康琪, 罗梦颖, 赵青华, 等. 辐射降温聚烯烃纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(7): 24-30. |
| CHANG Kangqi, LUO Mengying, ZHAO Qinghua, et al. Preparation and properties of radiation cooling polyolefin nanofiber membrane[J]. Journal of Textile Research, 2024, 45(7): 24-30. | |
| [5] | ZU Y, HU J, YANG M, et al. Electrochemical power generation humidity sensor based on WS2 nano-flakes[J]. Sensors and Actuators B: Chemical, 2024.DOI: 10.1016/j.snb.2024.135325. |
| [6] |
BUOITE STELLA A, FILINGERI D, GARASCIA G, et al. Skin wetness sensitivity across body sites commonly affected by pain in people with migraine[J]. Headache: The Journal of Head and Face Pain, 2022, 62(6): 737-747.
doi: 10.1111/head.v62.6 |
| [7] | EYAREFE O D, OLOGUNAGBA F M, EMIKPE B O. Wound healing potential of natural honey in diabetic and non-diabetic wistar rats[J]. African Journal of Biomedical Research, 2014, 17(1): 15-21. |
| [8] |
ÖĞÜLMÜŞ DEMIRCAN F, YÜCEDAĞ İ, TOZ M. A novel mathematical model including the wetness parameter as a variable for prevention of pressure ulcers[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2022, 236(3): 427-437.
doi: 10.1177/09544119211048557 |
| [9] |
SHIBAHARA M, SATO K. Illusion of wetness by dynamic touch[J]. IEEE Transactions on Haptics, 2019, 12(4): 533-541.
doi: 10.1109/TOH.2019.2919575 pmid: 31150346 |
| [10] | PLOUMITSAKOU M, MUHEIM J, FELOUZIS A, et al. Remapping wetness perception in upper limb amputees[J]. Advanced Intelligent Systems, 2024. DOI: 10.1002/aisy.202300512. |
| [11] |
FILINGERI D, FOURNET D, HODDER S, et al. Why wet feels wet? a neurophysiological model of human cutaneous wetness sensitivity[J]. Journal of Neurophysiology, 2014, 112(6): 1457-1469.
doi: 10.1152/jn.00120.2014 pmid: 24944222 |
| [12] | 唐香宁, 张昭华, 李俊, 等. 人体皮肤湿感觉的研究进展[J]. 纺织学报, 2017, 38(9): 174-180. |
| TANG Xiangning, ZHANG Zhaohua, LI Jun, et al. Research progress of human skin wetness perception[J]. Journal of Textile Research, 2017, 38(9): 174-180. | |
| [13] |
BERGMANN TIEST W M, KOSTERS N D, KAPPERS A M L, et al. Haptic perception of wetness[J]. Acta Psychologica, 2012, 141(2): 159-163.
doi: 10.1016/j.actpsy.2012.07.014 pmid: 22964056 |
| [14] |
FILINGERI D, REDORTIER B, HODDER S, et al. Warm temperature stimulus suppresses the perception of skin wetness during initial contact with a wet surface[J]. Skin Research and Technology, 2015, 21(1): 9-14.
doi: 10.1111/srt.12148 pmid: 24612108 |
| [15] |
ZHANG Z, SUN C, ZHANG X. The effect of the heat transfer mechanism on the psychophysical assessment of moisture sensation in fabrics[J]. Textile Research Journal, 2022, 92(19/20): 3629-3640.
doi: 10.1177/00405175221080095 |
| [16] | KATO I, MASUDA Y, NAGASHIMA K. Characteristics of wet perception during the static touch of moist paper by the index fingertip alongside thermal stimulus application[J]. Physiology & Behavior, 2023. DOI: 10.1016/j.physbeh.2022.114033. |
| [17] | ANDRÉ T. Fingertip skin as an optimal interface to manipulate objects: the role of moisture[D]. Louvain-la-Neuve: UCL-UniversitÉ Catholique de Louvain, 2010: 42-44. |
| [18] |
RACCUGLIA M, HODDER S, HAVENITH G. Human wetness perception in relation to textile water absorption parameters under static skin contact[J]. Textile Research Journal, 2017, 87(20): 2449-2463.
doi: 10.1177/0040517516671127 |
| [19] |
JIANG R, WANG Y. Study of the Human stickiness perception of wet fabric on the volar forearm via two contact modes: friction and adhesion-separation[J]. Perception, 2020, 49(12): 1311-1332.
doi: 10.1177/0301006620976992 pmid: 33302776 |
| [20] |
FILINGERI D, FOURNET D, HODDER S, et al. Tactile cues significantly modulate the perception of sweat-induced skin wetness independently of the level of physical skin wetness[J]. Journal of Neurophysiology, 2015, 113(10): 3462-3473.
doi: 10.1152/jn.00141.2015 pmid: 25878153 |
| [21] |
ZHANG Z, TANG X, WANG Y, et al. Effect of fiber type, water content, and velocity on wetness perception by the volar forearm test: threshold detection test[J]. Perception, 2020, 49(2): 139-154.
doi: 10.1177/0301006619899803 pmid: 32050861 |
| [22] |
ZHANG Z, TANG X, LI J, et al. The effect of dynamic friction with wet fabrics on skin wetness perception[J]. International Journal of Occupational Safety and Ergonomics, 2020, 26(2): 370-383.
doi: 10.1080/10803548.2018.1453023 pmid: 29537944 |
| [23] |
LITHFOUS S, TROCMET L, PEBAYLE T, et al. Investigating cold Aδ fibers in the 0-40 ℃ temperature range: a quantitative sensory testing and evoked potentials study[J]. Clinical Neurophysiology, 2022, 134: 81-87.
doi: 10.1016/j.clinph.2021.11.076 |
| [24] | LIAO X. Neuropsychological mechanisms of fabric touch sensations[D]. Hong Kong: The Hong Kong Polytechnic University, 2015: 294-296. |
| [25] |
ACKERLEY R, OLAUSSON H, WESSBERG J, et al. Wetness perception across body sites[J]. Neuroscience Letters, 2012, 522(1): 73-77.
doi: 10.1016/j.neulet.2012.06.020 pmid: 22710006 |
| [26] |
DESPRÉS O, MAMINO E, PEBAYLE T, et al. An electronical stimulator for quantitative sensory testing and evoked potential analysis of tactile Aβ nerve fibers[J]. Clinical Neurophysiology, 2023, 150: 184-193.
doi: 10.1016/j.clinph.2023.03.014 pmid: 37075683 |
| [27] |
ABAGNALE S, PANICO F, SAGLIANO L, et al. Pleasant touch: behavioural and hemodynamic responses to a protocol for systematic assessment of tactile stimulation[J]. Cortex, 2025, 184: 236-249.
doi: 10.1016/j.cortex.2025.01.003 pmid: 39908706 |
| [28] |
ETZI R, SPENCE C, GALLACE A. Textures that we like to touch: an experimental study of aesthetic preferences for tactile stimuli[J]. Consciousness and Cognition, 2014, 29: 178-188.
doi: 10.1016/j.concog.2014.08.011 pmid: 25286127 |
| [29] | MARSHALL A, ACKERLEY R. P990: uncovering the tactile aspects in sensing drops of water[J]. Clinical Neurophysiology, 2014. DOI: 10.1016/S1388-2457(14)51026-7. |
| [30] | LI S, LI B, GAO L, et al. Humidity response in Drosophila olfactory sensory neurons requires the mechanosensitive channel TMEM63[J]. Nature Communications, 2022. DOI: 10.1038/s41467-022-31253-z |
| [31] |
RUSSELL J, VIDAL-GADEA A G, MAKAY A, et al. Humidity sensation requires both mechanosensory and thermosensory pathways in Caenorhabditis elegans[J]. Proceedings of the National Academy of Sciences, 2014, 111(22): 8269-8274.
doi: 10.1073/pnas.1322512111 |
| [32] |
GEISLER W S, KERSTEN D. Illusions, perception and Bayes[J]. Nature Neuroscience, 2002, 5(6): 508-510.
pmid: 12037517 |
| [33] |
OTTEN M, SETH A K, PINTO Y. A social Bayesian brain: how social knowledge can shape visual perception[J]. Brain and Cognition, 2017, 112: 69-77.
doi: S0278-2626(16)30059-8 pmid: 27221986 |
| [34] |
HAGGARD P, IANNETTI G D, LONGO M R. Spatial sensory organization and body representation in pain perception[J]. Current Biology, 2013, 23(4): 164-176.
doi: 10.1016/j.cub.2013.01.047 pmid: 23428330 |
| [35] |
KING M, CARNAHAN H. Revisiting the brain activity associated with innocuous and noxious cold expo-sure[J]. Neuroscience & Biobehavioral Reviews, 2019, 104: 197-208.
doi: 10.1016/j.neubiorev.2019.06.021 |
| [36] |
GARKAVENKO V V, MAN'KOVSKAYA O P, OMEL'CHENKO T G, et al. Effect of cold stimulation of the arm fingers on the spectral/coherent EEG characteristics in humans[J]. Neurophysiology, 2008, 40(3): 228-230.
doi: 10.1007/s11062-008-9041-4 |
| [37] | SHAROONI P M, MAEREFAT M, ZOLFAGHARI S A, et al. A feasibility study on using fNIRS brain signals to recognize personal thermal sensation and thermal comfort conditions[J]. Journal of Exposure Science & Environmental Epidemiology, 2024, 34(6): 952-961. |
| [38] | MERRICK C. The influence of thermal, tactile and visual modalities on human skin wetness perception[D]. Loughborough: Loughborough University, 2021: 116-120. |
| [39] |
YUAN J, YU W, CHEN K, et al. A potential new fabric evaluation approach by capturing brain perception under fabric contact pressure[J]. Textile Research Journal, 2019, 89(16): 3312-3325.
doi: 10.1177/0040517518811939 |
| [40] |
TANG W, ZHANG S, YU C, et al. Tactile perception of textile fabrics based on friction and brain activa-tion[J]. Friction, 2023, 11(7): 1320-1333.
doi: 10.1007/s40544-022-0679-5 |
| [41] |
TALEEI T, NAZEM-ZADEH M R, AMIRI M, et al. EEG-based functional connectivity for tactile roughness discrimination[J]. Cognitive Neurodynamics, 2023, 17(4): 921-940.
doi: 10.1007/s11571-022-09876-1 pmid: 37522039 |
| [1] | GE Meitong, DONG Zhijia, CONG Honglian, DING Yuqin. Structure and moisture/thermal management evaluation of concave-convex lattice knitted fabrics [J]. Journal of Textile Research, 2024, 45(07): 47-54. |
| [2] | TAN Yidan, ZHANG Zhaohua, LI Shihan. Effect of different sensory modalities on wetness perception of fabrics [J]. Journal of Textile Research, 2024, 45(06): 82-88. |
| [3] | YAO Chenxi, WAN Ailan. Thermal and moisture comfort of polybutylene terephthalate/polyethylene terephthalate weft-knitted sports T-shirt fabrics [J]. Journal of Textile Research, 2024, 45(01): 90-98. |
| [4] | WANG Yutao, CONG Honglian, GU Hongyang. Structural design and thermal-moist comfort of weft knitted knee pads [J]. Journal of Textile Research, 2023, 44(10): 68-74. |
| [5] | QIAN Juan, XIE Ting, ZHANG Peihua, FU Shaoju. Thermal and moisture comfort performance of polyethylene knitted fabric [J]. Journal of Textile Research, 2022, 43(07): 60-66. |
| [6] | ZHANG Zhaohua, TANG Xiangning, LI Jun, LI Luyao. Threshold and intensity evaluation of skin wetness perception under dynamic contact with fabrics [J]. Journal of Textile Research, 2021, 42(02): 93-100. |
| [7] | KONG Lingjian;YAN Xiong. Application of gray system theory in evaluation of thermal and moisture comfort of bast fiber fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(4): 41-44. |
|
||